forked from mahmut-aksakalli/circuit_recognizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathskeleton.py
83 lines (70 loc) · 2.05 KB
/
skeleton.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from scipy import weave
import numpy as np
import cv2
import sys
import imutils
def _thinningIteration(im, iter):
I, M = im, np.zeros(im.shape, np.uint8)
expr = """
for (int i = 1; i < NI[0]-1; i++) {
for (int j = 1; j < NI[1]-1; j++) {
int p2 = I2(i-1, j);
int p3 = I2(i-1, j+1);
int p4 = I2(i, j+1);
int p5 = I2(i+1, j+1);
int p6 = I2(i+1, j);
int p7 = I2(i+1, j-1);
int p8 = I2(i, j-1);
int p9 = I2(i-1, j-1);
int A = (p2 == 0 && p3 == 1) + (p3 == 0 && p4 == 1) +
(p4 == 0 && p5 == 1) + (p5 == 0 && p6 == 1) +
(p6 == 0 && p7 == 1) + (p7 == 0 && p8 == 1) +
(p8 == 0 && p9 == 1) + (p9 == 0 && p2 == 1);
int B = p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9;
int m1 = iter == 0 ? (p2 * p4 * p6) : (p2 * p4 * p8);
int m2 = iter == 0 ? (p4 * p6 * p8) : (p2 * p6 * p8);
if (A == 1 && B >= 2 && B <= 6 && m1 == 0 && m2 == 0) {
M2(i,j) = 1;
}
}
}
"""
weave.inline(expr, ["I", "iter", "M"])
return (I & ~M)
def thinning(src):
dst = src.copy() / 255
prev = np.zeros(src.shape[:2], np.uint8)
diff = None
while True:
dst = _thinningIteration(dst, 0)
dst = _thinningIteration(dst, 1)
diff = np.absolute(dst - prev)
prev = dst.copy()
if np.sum(diff) == 0:
break
return dst * 255
def skeleton_endpoints(skel):
# make out input nice, possibly necessary
skel = skel.copy()
skel[skel!=0] = 1
skel = np.uint8(skel)
# apply the convolution
kernel = np.uint8([[1, 1, 1],
[1, 10, 1],
[1, 1, 1]])
filtered = cv2.filter2D(skel,-1,kernel)
out = np.zeros_like(skel)
out[np.where(filtered == 11)] = 255
return out
if __name__ == "__main__":
src = cv2.imread("circuit6.jpg")
src = imutils.resize(src,width=640)
gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
img = cv2.GaussianBlur(gray,(9,9),0)
th = cv2.adaptiveThreshold(img,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,\
cv2.THRESH_BINARY_INV,11,2)
bw = thinning(th)
ends = skeleton_endpoints(bw)
cv2.imshow("thinning", bw)
cv2.imshow("ends", ends)
cv2.waitKey()