-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsingle-validation-train.py
161 lines (139 loc) · 5.73 KB
/
single-validation-train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
from sklearn.metrics import cohen_kappa_score
from sklearn.model_selection import train_test_split
from datasets import Dataset
from transformers import (
AutoModelForSequenceClassification,
AutoTokenizer,
Trainer,
TrainingArguments,
get_polynomial_decay_schedule_with_warmup
)
import pandas as pd
import numpy as np
import torch
import argparse
import wandb
import warnings
warnings.filterwarnings("ignore")
def train_deberta(args):
MODEL_NAME = args.model_name
MAX_LENGTH = args.max_length
df_train = pd.read_csv(args.train_file_path)
df_train["labels"] = df_train.score.map(lambda x: x - 1)
model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels=6)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
X = df_train[["essay_id", "full_text", "score"]]
y = df_train[["labels"]]
X_train, X_eval, y_train, y_eval = train_test_split(X, y, test_size=args.test_size, stratify=y)
df_train = pd.concat([X_train, y_train], axis=1)
df_train.reset_index(drop=True, inplace=True)
print(df_train["labels"].value_counts())
df_eval = pd.concat([X_eval, y_eval], axis=1)
df_eval.reset_index(drop=True, inplace=True)
print(df_eval["labels"].value_counts())
ds_train = Dataset.from_pandas(df_train)
ds_eval = Dataset.from_pandas(df_eval)
def tokenize(sample):
return tokenizer(sample["full_text"], max_length=MAX_LENGTH, truncation=True)
ds_train = ds_train.map(tokenize).remove_columns(["essay_id", "full_text", "score"])
ds_eval = ds_eval.map(tokenize).remove_columns(["essay_id", "full_text", "score"])
class DataCollator:
def __call__(self, features):
model_inputs = [
{
"input_ids": feature["input_ids"],
"attention_mask": feature["attention_mask"],
"labels": feature["labels"]
} for feature in features
]
batch = tokenizer.pad(
model_inputs,
padding="max_length",
max_length=MAX_LENGTH,
return_tensors="pt",
pad_to_multiple_of=16
)
return batch
def compute_metrics(p):
preds, labels = p
score = cohen_kappa_score(
labels,
preds.argmax(-1),
weights="quadratic"
)
return {"qwk": score}
wandb.login(key="c465dd55c08ec111e077cf0454ba111b3a764a78")
wandb.init(
project="single-validation-train",
job_type="training",
anonymous="allow"
)
train_args = TrainingArguments(
output_dir=f"output",
fp16=True,
# learning_rate=args.learning_rate,
num_train_epochs=args.num_train_epochs,
per_device_train_batch_size=args.per_device_train_batch_size,
per_device_eval_batch_size=args.per_device_eval_batch_size,
gradient_accumulation_steps=args.gradient_accumulation_steps,
report_to="wandb",
evaluation_strategy="steps",
do_eval=True,
eval_steps=args.steps,
save_total_limit=args.save_total_limit,
save_strategy="steps",
save_steps=args.steps,
logging_steps=args.steps,
# lr_scheduler_type="linear",
metric_for_best_model="qwk",
greater_is_better=True,
# warmup_ratio=args.warmup_ratio,
weight_decay=args.weight_decay,
save_only_model=True,
neftune_noise_alpha=args.neftune_noise_alpha
)
optimizer = torch.optim.AdamW(
[{"params": model.parameters()}],
lr=args.learning_rate
)
gpu_count = torch.cuda.device_count()
print(f"Number of GPUs: {gpu_count}")
scheduler = get_polynomial_decay_schedule_with_warmup(
optimizer,
num_warmup_steps=args.num_train_epochs * int(len(ds_train) * 1.0 / gpu_count / args.per_device_train_batch_size / args.gradient_accumulation_steps) * args.warmup_ratio,
num_training_steps=args.num_train_epochs * int(len(ds_train) * 1.0 / gpu_count / args.per_device_train_batch_size / args.gradient_accumulation_steps),
power=args.power,
lr_end=args.lr_end
)
trainer = Trainer(
model=model,
args=train_args,
train_dataset=ds_train,
eval_dataset=ds_eval,
data_collator=DataCollator(),
tokenizer=tokenizer,
compute_metrics=compute_metrics,
optimizers=(optimizer, scheduler)
)
trainer.train()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Finetune Deberta-v3 For Sequence Classification Task")
parser.add_argument("--train_file_path", default="dataset/train.csv", type=str)
parser.add_argument("--test_size", default=0.25, type=float)
parser.add_argument("--model_name", default="microsoft/deberta-v3-large", type=str)
parser.add_argument("--max_length", default=1024, type=int)
parser.add_argument("--learning_rate", default=2e-5, type=float)
parser.add_argument("--num_train_epochs", default=3, type=int)
parser.add_argument("--per_device_train_batch_size", default=1, type=int)
parser.add_argument("--per_device_eval_batch_size", default=1, type=int)
parser.add_argument("--gradient_accumulation_steps", default=16, type=int)
parser.add_argument("--steps", default=100, type=int)
parser.add_argument("--warmup_ratio", default=0.1, type=float)
parser.add_argument("--save_total_limit", default=10, type=int)
parser.add_argument("--weight_decay", default=0.001, type=float)
parser.add_argument("--power", default=1.5, type=float)
parser.add_argument("--lr_end", default=1e-6, type=float)
parser.add_argument("--neftune_noise_alpha", default=0.05, type=float)
args = parser.parse_args()
print(args)
train_deberta(args)