forked from PaddlePaddle/PaddleRec
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnet.py
78 lines (67 loc) · 2.55 KB
/
net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import math
class TextCNNLayer(nn.Layer):
def __init__(self,
dict_dim,
emb_dim,
class_dim,
padding_idx=0,
cnn_dim=128,
filter_sizes=[1, 2, 3],
hidden_size=96,
conv_layer_activation=nn.Tanh()):
super(TextCNNLayer, self).__init__()
self.dict_dim = dict_dim
self.emb_dim = emb_dim
self.class_dim = class_dim
self.padding_idx = padding_idx
self.cnn_dim = cnn_dim
self.filter_sizes = filter_sizes
self.hidden_size = hidden_size
self.conv_layer_activation = conv_layer_activation
self.embedding = paddle.nn.Embedding(
self.dict_dim, self.emb_dim, padding_idx=self.padding_idx)
self.convs = [
nn.Conv2D(
in_channels=1,
out_channels=self.cnn_dim,
kernel_size=(i, self.emb_dim)) for i in self.filter_sizes
]
self.projection_layer = paddle.nn.Linear(
in_features=self.cnn_dim * len(self.filter_sizes),
out_features=self.hidden_size)
self.output_layer = paddle.nn.Linear(
in_features=self.hidden_size, out_features=self.class_dim)
def forward(self, inputs):
emb = self.embedding(inputs)
emb = emb.unsqueeze(1)
# convolution layer
convs_out = [
self.conv_layer_activation(conv(emb)).squeeze(3)
for conv in self.convs
]
# pool layer
maxpool_out = [
F.max_pool1d(
t, kernel_size=t.shape[2]).squeeze(2) for t in convs_out
]
conv_pool_out = paddle.concat(maxpool_out, axis=1)
conv_pool_out = self.projection_layer(conv_pool_out)
act_out = paddle.tanh(conv_pool_out)
logits = self.output_layer(act_out)
return logits