-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
40 lines (32 loc) · 1.49 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import numpy as np
import pandas as pd
from MultiOmiVAE import MultiOmiVAE
from MethyOmiVAE import MethyOmiVAE
from ExprOmiVAE import ExprOmiVAE
from plot_sactter import plot_scatter
from classification import classification
if __name__ == "__main__":
input_path = 'data/OmiVAE/PANCAN/GDC-PANCAN_'
expr_path = input_path + 'htseq_fpkm_'
methy_path = input_path + 'methylation450_'
# Loading data
print('Loading gene expression data...')
expr_df = pd.read_csv(expr_path + 'preprocessed_both.tsv', sep='\t', header=0, index_col=0)
print('Loading DNA methylation data...')
methy_chr_df_list = []
chr_id = list(range(1, 23))
chr_id.append('X')
# Loop among different chromosomes
for chrom in chr_id:
print('Loading methylation data on chromosome ' + str(chrom) + '...')
methy_chr_path = methy_path + 'preprocessed_both_chr' + str(chrom) + '.tsv'
# methy_chr_df = pd.read_csv(methy_chr_path, sep='\t', header=0, index_col=0, dtype=all_cols_f32)
methy_chr_df = pd.read_csv(methy_chr_path, sep='\t', header=0, index_col=0)
methy_chr_df_list.append(methy_chr_df)
e_num_1 = 50
e_num_2 = 200
l_dim = 128
# Example
latent_code, train_acc, val_acc = MultiOmiVAE(input_path=input_path, expr_df=expr_df,
methy_chr_df_list=methy_chr_df_list, p1_epoch_num=e_num_1,
p2_epoch_num=e_num_2, latent_dim=l_dim, early_stopping=False)