-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_clime.py
117 lines (93 loc) · 3.47 KB
/
train_clime.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
from modeling import CLIME, Seq2SeqTrainer
from utils import Config, extract_suffix, get_params, get_clime_paths, save_clime_components
from process_data_clime import process_data, compute_metrics
import argparse
import wandb
import torch
from torch import nn
from datasets import load_dataset, load_metric
from transformers import AutoTokenizer
import transformers
from transformers import (
AutoModelForSeq2SeqLM,
AutoTokenizer,
DataCollatorForSeq2Seq,
Seq2SeqTrainingArguments,
Trainer
)
def initialize(config_path):
config_params = Config(config_fpath=config_path)
suffix = extract_suffix(config_path)
MODEL_PATH = config_params.clime_model_init
TOKENIZER_PATH = config_params.clime_model_init
BASE_PATH = 'models/'
SAVE_PATH, LOGGING_PATH, SAVE_MODEL_PATH, wandb_runname = get_clime_paths(BASE_PATH, suffix)
batch_size = config_params.batch_size
lr = config_params.lr
wandb_run = wandb.init(
project="quarc",
config={
"per_device_train_batch_size": batch_size,
"learning_rate": lr})
wandb_run.name = wandb_runname
print(f']INFO] The W&B run name is: {wandb_runname}')
return MODEL_PATH, TOKENIZER_PATH, SAVE_PATH, LOGGING_PATH, \
SAVE_MODEL_PATH, config_params, batch_size, lr
def train_clime(config_path):
MODEL_PATH, TOKENIZER_PATH, SAVE_PATH, \
LOGGING_PATH, SAVE_MODEL_PATH, config_params, \
batch_size, lr = initialize(config_path)
tokenized_datasets, tokenizer = process_data(config_params=config_params,
tokenizer_path=TOKENIZER_PATH)
epochs = config_params.clime_epochs
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
model = CLIME.from_pretrained(MODEL_PATH).to(DEVICE)
model.update_encoder(config_params=config_params)
get_params(model=model)
data_collator = DataCollatorForSeq2Seq(
tokenizer,
model=model,
label_pad_token_id=-100,
pad_to_multiple_of=8,
)
args = Seq2SeqTrainingArguments(
output_dir=SAVE_PATH,
learning_rate=lr,
do_train = True,
do_eval = True,
evaluation_strategy="steps",
per_device_train_batch_size=batch_size,
per_device_eval_batch_size=batch_size,
weight_decay=0.01,
save_total_limit=5,
load_best_model_at_end=True,
num_train_epochs=epochs,
predict_with_generate=True,
# fp16=True,
logging_dir=LOGGING_PATH,
logging_steps=300,
save_steps=600,
metric_for_best_model='rougeLsum',
greater_is_better=True,
report_to = "wandb",
)
trainer = Seq2SeqTrainer(
model=model,
args=args,
data_collator=data_collator,
train_dataset=tokenized_datasets["train"],
eval_dataset=tokenized_datasets["validation"],
tokenizer=tokenizer,
compute_metrics=compute_metrics,)
print(trainer.evaluate())
print("*"*60)
print(trainer.train())
print("*"*60)
print(trainer.evaluate())
trainer.save_model(SAVE_MODEL_PATH)
save_clime_components(model=model, save_path=SAVE_MODEL_PATH)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config_path", "-c", type=str, default="configs/config_base.yaml", help="Path to the config file")
args = parser.parse_args()
train_clime(config_path=args.config_path)