diff --git a/notebooks/L2ARCTIC_EDA.ipynb b/notebooks/L2ARCTIC_EDA.ipynb index 147e586..49dbf42 100644 --- a/notebooks/L2ARCTIC_EDA.ipynb +++ b/notebooks/L2ARCTIC_EDA.ipynb @@ -506,105 +506,6 @@ }, { "cell_type": "code", - "execution_count": 88, - "metadata": {}, - "outputs": [ - { - "data": { - "text/plain": [ - "('fɔɹðʌtwɛntiɪθtaɪmðætivnɪŋkðʌtumɛnʃʊkhænss',\n", - " array([ 40, 27, 22, ..., 107, 86, 64], dtype=int16))" - ] - }, - "execution_count": 88, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "dataset[0]" - ] - }, - { - "cell_type": "code", -<<<<<<< HEAD -======= - "execution_count": 124, - "metadata": {}, - "outputs": [], - "source": [ - "target_vocab = set(''.join(ARPABET2IPA.values()))\n", - "target_vocab_vectors = {t: phoneme_to_vector(t) for t in target_vocab}\n", - "\n", - "pred_vocab_vectors = {}\n", - "for k, v in processor.tokenizer.vocab.items():\n", - " if k in processor.tokenizer.special_tokens_map.values():\n", - " continue\n", - " pred_vocab_vectors[v] = phoneme_to_vector(k)" - ] - }, - { - "cell_type": "code", - "execution_count": 200, - "metadata": {}, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "['fɔʊðɛtwɛntiiθɑjimðɛtiviniŋðɛθwumɪnʃʊkhʌnts'] (0.38095238095238093, 30.0)\n" - ] - } - ], - "source": [ - "input_values = processor([dataset[0][1]], sampling_rate=TARGET_SAMPLE_RATE, return_tensors=\"pt\", padding=True).input_values.type(torch.float32).to(DEVICE)\n", - "with torch.no_grad():\n", - " logits = model(input_values).logits\n", - "probabilities = torch.nn.functional.softmax(logits, dim=-1)\n", - "\n", - "trans = []\n", - "for probs in probabilities:\n", - " phones = ''\n", - " for prb in probs:\n", - " if prb[0] < 0.5:\n", - " # if torch.argmax(prb) != processor.tokenizer.pad_token_id:\n", - " voted = torch.zeros((22,))\n", - " for i, p in enumerate(prb):\n", - " if i not in pred_vocab_vectors:\n", - " continue\n", - " voted += pred_vocab_vectors[i] * (p.item() ** 0.8)\n", - " voted /= torch.sum(prb).to(voted.device)\n", - " # high, low = voted[voted > 0].mean() - voted[voted > 0].std(), voted[voted < 0].mean() + voted[voted < 0].std()\n", - " # voted[voted > high] = 1\n", - " # voted[voted < low] = -1\n", - " # voted[(voted >= low) & (voted <= high)] = 0\n", - " # voted = torch.Tensor(pred_vocab_vectors[torch.argmax(prb).item()])\n", - " \n", - " max_cos_similarity = 0\n", - " max_cos_phoneme = None\n", - " for p, v in target_vocab_vectors.items():\n", - " cos_similarity = torch.nn.functional.cosine_similarity(voted, torch.Tensor(v), 0)\n", - " if cos_similarity > max_cos_similarity:\n", - " max_cos_similarity = cos_similarity\n", - " max_cos_phoneme = p\n", - " assert max_cos_phoneme\n", - " phones += max_cos_phoneme\n", - " else:\n", - " phones += ' '\n", - " # remove consecutive duplicates\n", - " phones = ''.join([c for i, c in enumerate(phones) if i == 0 or c != phones[i-1]])\n", - " # remove spaces\n", - " phones = phones.replace(' ', '')\n", - " trans.append(phones)\n", - "\n", - "# predicted_ids = torch.argmax(probabilities, dim=-1)\n", - "# trans = [processor.decode(ids) for ids in predicted_ids][0]\n", - "print(trans, panphon_model_eval(trans, dataset[0][0]))" - ] - }, - { - "cell_type": "code", ->>>>>>> 092d22a16c599b5c60c4f90671551668e16a0c2a "execution_count": 13, "metadata": {}, "outputs": [ @@ -763,46 +664,9 @@ }, { "cell_type": "code", -<<<<<<< HEAD "execution_count": null, "metadata": {}, "outputs": [], -======= - "execution_count": 206, - "metadata": {}, - "outputs": [ - { - "ename": "KeyboardInterrupt", - "evalue": "", - "output_type": "error", - "traceback": [ - "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", - "\u001b[0;31mKeyboardInterrupt\u001b[0m Traceback (most recent call last)", - "Cell \u001b[0;32mIn[206], line 25\u001b[0m\n\u001b[1;32m 23\u001b[0m size \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mmin\u001b[39m(BATCH_SIZE, amount \u001b[38;5;241m-\u001b[39m i)\n\u001b[1;32m 24\u001b[0m \u001b[38;5;66;03m# transcriptions = transcribe_batch([suitcase[i+j] for j in range(size)])\u001b[39;00m\n\u001b[0;32m---> 25\u001b[0m transcriptions \u001b[38;5;241m=\u001b[39m \u001b[43mtranscribe_batch_weighted\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[43msuitcase\u001b[49m\u001b[43m[\u001b[49m\u001b[43mi\u001b[49m\u001b[38;5;241;43m+\u001b[39;49m\u001b[43mj\u001b[49m\u001b[43m]\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mj\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[38;5;28;43mrange\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43msize\u001b[49m\u001b[43m)\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 26\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m j \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(size):\n\u001b[1;32m 27\u001b[0m label, pred \u001b[38;5;241m=\u001b[39m suitcase[i\u001b[38;5;241m+\u001b[39mj][\u001b[38;5;241m0\u001b[39m], transcriptions[j]\n", - "Cell \u001b[0;32mIn[201], line 13\u001b[0m, in \u001b[0;36mtranscribe_batch_weighted\u001b[0;34m(batch)\u001b[0m\n\u001b[1;32m 11\u001b[0m input_values \u001b[38;5;241m=\u001b[39m processor([x[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;28;01mfor\u001b[39;00m x \u001b[38;5;129;01min\u001b[39;00m batch], sampling_rate\u001b[38;5;241m=\u001b[39mTARGET_SAMPLE_RATE, return_tensors\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpt\u001b[39m\u001b[38;5;124m\"\u001b[39m, padding\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mTrue\u001b[39;00m)\u001b[38;5;241m.\u001b[39minput_values\u001b[38;5;241m.\u001b[39mtype(torch\u001b[38;5;241m.\u001b[39mfloat32)\u001b[38;5;241m.\u001b[39mto(DEVICE)\n\u001b[1;32m 12\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mno_grad():\n\u001b[0;32m---> 13\u001b[0m logits \u001b[38;5;241m=\u001b[39m \u001b[43mmodel\u001b[49m\u001b[43m(\u001b[49m\u001b[43minput_values\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mlogits\n\u001b[1;32m 15\u001b[0m probabilities \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mnn\u001b[38;5;241m.\u001b[39mfunctional\u001b[38;5;241m.\u001b[39msoftmax(logits, dim\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 17\u001b[0m trans \u001b[38;5;241m=\u001b[39m []\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/torch/nn/modules/module.py:1553\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m 1552\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1553\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/torch/nn/modules/module.py:1562\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1557\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1558\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1559\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1560\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1561\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1564\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1565\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:2229\u001b[0m, in \u001b[0;36mWav2Vec2ForCTC.forward\u001b[0;34m(self, input_values, attention_mask, output_attentions, output_hidden_states, return_dict, labels)\u001b[0m\n\u001b[1;32m 2226\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m labels \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m labels\u001b[38;5;241m.\u001b[39mmax() \u001b[38;5;241m>\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig\u001b[38;5;241m.\u001b[39mvocab_size:\n\u001b[1;32m 2227\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mLabel values must be <= vocab_size: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00m\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mconfig\u001b[38;5;241m.\u001b[39mvocab_size\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m-> 2229\u001b[0m outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mwav2vec2\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 2230\u001b[0m \u001b[43m \u001b[49m\u001b[43minput_values\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2231\u001b[0m \u001b[43m \u001b[49m\u001b[43mattention_mask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattention_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2232\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_attentions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_attentions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2233\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_hidden_states\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_hidden_states\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2234\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_dict\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_dict\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 2235\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 2237\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m outputs[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 2238\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdropout(hidden_states)\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/torch/nn/modules/module.py:1553\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m 1552\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1553\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/torch/nn/modules/module.py:1562\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1557\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1558\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1559\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1560\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1561\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1564\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1565\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:1824\u001b[0m, in \u001b[0;36mWav2Vec2Model.forward\u001b[0;34m(self, input_values, attention_mask, mask_time_indices, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 1819\u001b[0m hidden_states, extract_features \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mfeature_projection(extract_features)\n\u001b[1;32m 1820\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_mask_hidden_states(\n\u001b[1;32m 1821\u001b[0m hidden_states, mask_time_indices\u001b[38;5;241m=\u001b[39mmask_time_indices, attention_mask\u001b[38;5;241m=\u001b[39mattention_mask\n\u001b[1;32m 1822\u001b[0m )\n\u001b[0;32m-> 1824\u001b[0m encoder_outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mencoder\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1825\u001b[0m \u001b[43m \u001b[49m\u001b[43mhidden_states\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1826\u001b[0m \u001b[43m \u001b[49m\u001b[43mattention_mask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattention_mask\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1827\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_attentions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_attentions\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1828\u001b[0m \u001b[43m \u001b[49m\u001b[43moutput_hidden_states\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_hidden_states\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1829\u001b[0m \u001b[43m \u001b[49m\u001b[43mreturn_dict\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mreturn_dict\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 1830\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1832\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m encoder_outputs[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 1834\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39madapter \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/torch/nn/modules/module.py:1553\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m 1552\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1553\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/torch/nn/modules/module.py:1562\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1557\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1558\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1559\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1560\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1561\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1564\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1565\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:1149\u001b[0m, in \u001b[0;36mWav2Vec2EncoderStableLayerNorm.forward\u001b[0;34m(self, hidden_states, attention_mask, output_attentions, output_hidden_states, return_dict)\u001b[0m\n\u001b[1;32m 1142\u001b[0m layer_outputs \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_gradient_checkpointing_func(\n\u001b[1;32m 1143\u001b[0m layer\u001b[38;5;241m.\u001b[39m\u001b[38;5;21m__call__\u001b[39m,\n\u001b[1;32m 1144\u001b[0m hidden_states,\n\u001b[1;32m 1145\u001b[0m attention_mask,\n\u001b[1;32m 1146\u001b[0m output_attentions,\n\u001b[1;32m 1147\u001b[0m )\n\u001b[1;32m 1148\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1149\u001b[0m layer_outputs \u001b[38;5;241m=\u001b[39m \u001b[43mlayer\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 1150\u001b[0m \u001b[43m \u001b[49m\u001b[43mhidden_states\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mattention_mask\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mattention_mask\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43moutput_attentions\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43moutput_attentions\u001b[49m\n\u001b[1;32m 1151\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1152\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m layer_outputs[\u001b[38;5;241m0\u001b[39m]\n\u001b[1;32m 1154\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m skip_the_layer:\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/torch/nn/modules/module.py:1553\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m 1552\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1553\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/torch/nn/modules/module.py:1562\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1557\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1558\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1559\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1560\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1561\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1564\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1565\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:987\u001b[0m, in \u001b[0;36mWav2Vec2EncoderLayerStableLayerNorm.forward\u001b[0;34m(self, hidden_states, attention_mask, output_attentions)\u001b[0m\n\u001b[1;32m 985\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdropout(hidden_states)\n\u001b[1;32m 986\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m attn_residual \u001b[38;5;241m+\u001b[39m hidden_states\n\u001b[0;32m--> 987\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m hidden_states \u001b[38;5;241m+\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfeed_forward\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfinal_layer_norm\u001b[49m\u001b[43m(\u001b[49m\u001b[43mhidden_states\u001b[49m\u001b[43m)\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 989\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39madapter_layer \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[1;32m 990\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m hidden_states \u001b[38;5;241m+\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39madapter_layer(hidden_states)\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/torch/nn/modules/module.py:1553\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m 1552\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1553\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/torch/nn/modules/module.py:1562\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1557\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1558\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1559\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1560\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1561\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1564\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1565\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/transformers/models/wav2vec2/modeling_wav2vec2.py:911\u001b[0m, in \u001b[0;36mWav2Vec2FeedForward.forward\u001b[0;34m(self, hidden_states)\u001b[0m\n\u001b[1;32m 910\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mforward\u001b[39m(\u001b[38;5;28mself\u001b[39m, hidden_states):\n\u001b[0;32m--> 911\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mintermediate_dense\u001b[49m\u001b[43m(\u001b[49m\u001b[43mhidden_states\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 912\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mintermediate_act_fn(hidden_states)\n\u001b[1;32m 913\u001b[0m hidden_states \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mintermediate_dropout(hidden_states)\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/torch/nn/modules/module.py:1553\u001b[0m, in \u001b[0;36mModule._wrapped_call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1551\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_compiled_call_impl(\u001b[38;5;241m*\u001b[39margs, \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs) \u001b[38;5;66;03m# type: ignore[misc]\u001b[39;00m\n\u001b[1;32m 1552\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m-> 1553\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_call_impl\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/torch/nn/modules/module.py:1562\u001b[0m, in \u001b[0;36mModule._call_impl\u001b[0;34m(self, *args, **kwargs)\u001b[0m\n\u001b[1;32m 1557\u001b[0m \u001b[38;5;66;03m# If we don't have any hooks, we want to skip the rest of the logic in\u001b[39;00m\n\u001b[1;32m 1558\u001b[0m \u001b[38;5;66;03m# this function, and just call forward.\u001b[39;00m\n\u001b[1;32m 1559\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m (\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39m_forward_pre_hooks\n\u001b[1;32m 1560\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_backward_pre_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_backward_hooks\n\u001b[1;32m 1561\u001b[0m \u001b[38;5;129;01mor\u001b[39;00m _global_forward_hooks \u001b[38;5;129;01mor\u001b[39;00m _global_forward_pre_hooks):\n\u001b[0;32m-> 1562\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mforward_call\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[38;5;241;43m*\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 1564\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[1;32m 1565\u001b[0m result \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mNone\u001b[39;00m\n", - "File \u001b[0;32m~/Desktop/CS/Startups/Koel/ML/venv/lib/python3.8/site-packages/torch/nn/modules/linear.py:117\u001b[0m, in \u001b[0;36mLinear.forward\u001b[0;34m(self, input)\u001b[0m\n\u001b[1;32m 116\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mforward\u001b[39m(\u001b[38;5;28mself\u001b[39m, \u001b[38;5;28minput\u001b[39m: Tensor) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Tensor:\n\u001b[0;32m--> 117\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mF\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mlinear\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43minput\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mweight\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbias\u001b[49m\u001b[43m)\u001b[49m\n", - "\u001b[0;31mKeyboardInterrupt\u001b[0m: " - ] - } - ], ->>>>>>> 092d22a16c599b5c60c4f90671551668e16a0c2a "source": [ "# MODEL_ID = \"KoelLabs/xlsr-timit-a1\"\n", "# MODEL_ID = \"KoelLabs/xlsr-timit-b0\"\n",