-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
218 lines (174 loc) · 5.78 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
# -*- coding: utf-8 -*-
"""
@author: Daniel Koch
This code contains the model functions used in the simulations from figure 3, figure 4
and supplementary figures 2 (a)-(d), 3 - 6.
Koch D, Nandan A, Ramesan G, Tyukin I, Gorban A, Koseska A (2024):
Ghost channels and ghost cycles guiding long transients in dynamical systems
In: Physical Review Letters (forthcoming)
"""
import numpy as np
#%% elementary functions in 2D
def w(c,A,s=1):
x,y = c
x1,x2,y1,y2 = A
w = 1/4*(np.tanh(s*(x-x1)) - np.tanh(s*(x-x2)))*(np.tanh(s*(y-y1)) - np.tanh(s*(y-y2)))
return w
def wM(c,A,s=1):
x,y = c
w = 0
for a in A:
x1,x2,y1,y2 = a
w += 1/4*(np.tanh(s*(x-x1)) - np.tanh(s*(x-x2)))*(np.tanh(s*(y-y1)) - np.tanh(s*(y-y2)))
return w
def sys_lin(x0,t,p):
x,y = x0
a,b,xo,yo = p
dx = a*(x+xo)
dy = b*(y+yo)
return np.array([dx,dy])
def sys_constant(x0,t,p):
x,y = x0
a,b= p
dx = a*np.ones(x.shape)
dy = b*np.ones(y.shape)
return np.array([dx,dy])
def sys_xGhost(x0,t,p):
x,y = x0
xo,yo,b,r = p
dx = r + (x+xo)**2
dy = b*(y+yo)
return np.array([dx,dy])
#%% elementary functions in 3D
def w3d(c,V,s=1):
x,y,z = c
x1,x2,y1,y2,z1,z2 = V
w = 1/4*(np.tanh(s*(x-x1)) - np.tanh(s*(x-x2)))*(np.tanh(s*(y-y1)) - np.tanh(s*(y-y2)))*(np.tanh(s*(z-z1)) - np.tanh(s*(z-z2)))
return w
def sys3d_lin(x0,t,p):
x,y,z = x0
a,b,xo,yo,zo = p
dx = a*(x+xo)
dy = b*(y+yo)
dz = b*(z+zo)
return np.array([dx,dy,dz])
def sys3d_xGhost(x0,t,p):
x,y,z = x0
xo,yo,zo,b,r = p
dx = r + (x+xo)**2
dy = b*(y+yo)
dz = b*(z+zo)
return np.array([dx,dy,dz])
def sys3d_yGhost(x0,t,p):
x,y,z = x0
xo,yo,zo,b,r = p
dx = b*(x+xo)
dy = r + (y+yo)**2
dz = b*(z+zo)
return np.array([dx,dy,dz])
#%% Horchler SHC
def connectionMatrix(alpha, beta, v):
a1,a2,a3 = alpha
b1,b2,b3 = beta
v1,v2,v3 = v
return np.array([
[a1/b1, (a1+a2)/b2, (a1-a3/v3)/b3],
[(a2-a1/v1)/b1, a2/b2, (a2+a3)/b3],
[(a3+a1)/b1, (a3-a2/v2)/b2, a3/b3]
])
def Horchler2015(x0,t,p):
a = x0
alpha,beta,v=p
rho = connectionMatrix(alpha, beta, v)
da = np.zeros(3)
for i in range(3):
da[i] = a[i]*(alpha[i] - np.sum(rho[i,:]*a))
return da
#%% 4 saddle heteroclinic channel
def sys_HC4(x0,t,p):
a1 = [[0,1,0,1],[1,2,1,2],[2,3,2,3],[3,4,3,4]]
a2 = [[0,1,1,2],[0,1,2,3],[0,1,3,4],[0,1,4,5],
[1,2,2,3],[1,2,3,4],[1,2,4,5],
[2,3,3,4],[2,3,4,5],
[3,4,4,5]]
a3 = [[1,2,0,1],[2,3,0,1],[2,3,1,2],
[3,4,0,1],[3,4,1,2],[3,4,2,3],
[4,5,0,1],[4,5,1,2],[4,5,2,3],[4,5,3,4]]
s = 5 #steepness of weighting functions
d = 1 #saddle value
dx = 0
for a_ in a1:
dx += w(x0,a_,s)*sys_lin(x0,t,[1,-d,-((a_[0]+a_[1])/2),-((a_[0]+a_[1])/2)])
dx += wM(x0,a2,s)*sys_constant(x0,t,[-0.05,-0.05])*x0[0]+wM(x0,a3,s)*sys_constant(x0,t,[0.05,0.05])
return dx
#%% 4 ghost channel
def sys_ghost4(x0,t,p):
a1 = [[0,1,0,1],[1,2,1,2],[2,3,2,3],[3,4,3,4]]
a2 = [[0,1,1,2],[0,1,2,3],[0,1,3,4],[0,1,4,5],
[1,2,2,3],[1,2,3,4],[1,2,4,5],
[2,3,3,4],[2,3,4,5],
[3,4,4,5]]
a3 = [[1,2,0,1],
[2,3,0,1],[2,3,1,2],
[3,4,0,1],[3,4,1,2],[3,4,2,3],
[4,5,0,1],[4,5,1,2],[4,5,2,3],[4,5,3,4]]
s = 5
dx = 0
for a_ in a1:
dx += w(x0,a_,s)*sys_xGhost(x0,t,[-((a_[0]+a_[1])/2),-((a_[2]+a_[3])/2),-1,0.002])
dx += wM(x0,a2,s)*sys_constant(x0,t,[-0.05,-0.05])*x0[0]+wM(x0,a3,s)*sys_constant(x0,t,[0.05,0.05])
return dx
#%% Ghost cycles
def sys_ghostCycle3D(x0,t,p):
a,s = p
a1,a2,a3,a4 = a
dx = 0
dx += w3d(x0,a1,s)*sys3d_xGhost(x0,t,[-0.5,-0.5,-0.5,-1,0.002])
dx += w3d(x0,a2,s)*sys3d_yGhost(x0,t,[-1.5,-0.5,-0.5,-1,0.002])
dx += w3d(x0,a3,s)*(-sys3d_xGhost(x0,t,[-1.5,-1.5,-0.5,1,0.002]))
dx += w3d(x0,a4,s)*(-sys3d_yGhost(x0,t,[-0.5,-1.5,-0.5,1,0.002]))
return dx
def sys_ghostCycle3D_varAlpha(x0,t,p):
a,s,alpha = p
a1,a2,a3,a4 = a
dx = 0
dx += w3d(x0,a1,s)*sys3d_xGhost(x0,t,[-0.5,-0.5,-0.5,-1,alpha])
dx += w3d(x0,a2,s)*sys3d_yGhost(x0,t,[-1.5,-0.5,-0.5,-1,alpha])
dx += w3d(x0,a3,s)*(-sys3d_xGhost(x0,t,[-1.5,-1.5,-0.5,1,alpha]))
dx += w3d(x0,a4,s)*(-sys3d_yGhost(x0,t,[-0.5,-1.5,-0.5,1,alpha]))
return dx
def sys_Farjami2021(x,t,p):
# doi: 10.1098/rsif.2021.0442
g = p
g1 = g; g2 = g; g3 = g
b1 = 1e-5
b2 = 1e-5
b3 = 1e-5
alpha1 = 9
alpha2 = 9
alpha3 = 9
beta1 = 0.1
beta2 = 0.1
beta3 = 0.1
h = 3
d1 = 0.2
d2 = 0.2
d3 = 0.2
dx1 = b1 + g1 / ((1+alpha1*(x[1]**h))*(1+beta1*(x[2]**h))) - d1*x[0]
dx2 = b2 + g2 / ((1+alpha2*(x[2]**h))*(1+beta2*(x[0]**h))) - d2*x[1]
dx3 = b3 + g3 / ((1+alpha3*(x[0]**h))*(1+beta3*(x[1]**h))) - d3*x[2]
return np.array([dx1, dx2, dx3])
#%% Ghost/Saddle hybrid
def sys_hybrid(x0,t,p):
a,s,alpha = p
a1,a2,a3,a4,a5,a6,a7 = a
ls=1.4
dx = 0
dx += w3d(x0,a1,s)*sys3d_xGhost(x0,t,[-0.5,-0.5,-0.5,-1,alpha])
dx += w3d(x0,a2,s)*sys3d_yGhost(x0,t,[-1.5,-0.5,-0.5,-1,alpha])
dx += w3d(x0,a3,s)*(-sys3d_yGhost(x0,t,[-0.5,-1.5,-0.5,1,alpha]))
dx += w3d(x0,a4,s)*sys3d_lin(x0,t,[1,-ls,-1.5,-1.5,-0.5])
dx += w3d(x0,a5,s)*sys3d_yGhost(x0,t,[-2.5,-1.5,-0.5,-1,alpha])
dx += w3d(x0,a6,s)*(-sys3d_yGhost(x0,t,[-1.5,-2.5,-0.5,1,alpha]))
dx += w3d(x0,a7,s)*(-sys3d_xGhost(x0,t,[-2.5,-2.5,-0.5,1,alpha]))
return dx