-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_prawns.py
1247 lines (1041 loc) · 64.9 KB
/
run_prawns.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import numpy as np
import pandas as pd
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from collections import Counter
import glob
import os, time
from collections import Counter
import math
import shlex, subprocess
from io import StringIO
from queue import Queue
from multiprocessing import Pool
import random
from scipy.spatial.distance import hamming
import pickle
import timeit
import time
from datetime import datetime
import argparse, sys
from sklearn.cluster import KMeans
from sklearn.decomposition import PCA, TruncatedSVD
from scipy.cluster.hierarchy import dendrogram, linkage, fcluster
from scipy.spatial.distance import squareform, hamming
# import psutil
import scipy
from scipy.sparse import csr_matrix, dok_matrix
from scipy.sparse.csgraph import minimum_spanning_tree
from joblib import Parallel, delayed, parallel_backend
from __init__ import __version__
def read_file(filepath):
f = open(filepath, 'r')
lines = f.readlines()
f.close()
return lines
def write_file(filename, out_str):
f = open(filename, 'w+')
f.write(out_str)
f.close()
def run_cpp_binaries(binary_file, *args):
cmd = binary_file
for arg in args:
cmd += ' {}'.format(arg)
print('run_cpp_binaries: ', cmd)
try:
p = subprocess.Popen(shlex.split(cmd))#, stdout=open(mum_results_file, 'w'))
# print('waiting...', cmd)
p.wait()
print(cmd, ' output obtained')
except Exception as e:
print(cmd, e)
def create_dir(directory_name):
cmd = "mkdir {}".format(directory_name)
p = subprocess.Popen(shlex.split(cmd))
p.wait()
print(directory_name, " created")
def remove_file(filename):
cmd = "rm -rf {}".format(filename)
try:
p = subprocess.Popen(shlex.split(cmd), shell=True)
p.wait()
except Exception as e:
print("remove_file error", cmd, e)
def remove_file2(filename):
cmd = "rm -rf {}".format(filename)
try:
p = subprocess.Popen(shlex.split(cmd))
p.wait()
except Exception as e:
print("remove_file error", cmd, e)
def cpp_dir_input_setup(assemblies, fasta_file_list, ncores, block_pair_binned_partitions, min_presence_count,
use_oriented_links, oriented_links_file_list, outdir):
# outdir = "PRAWNS_results"
if(os.path.exists(outdir)):
outdir += "_{}".format(datetime.now().strftime('%Y-%m-%d_%H-%M-%S'))
if(outdir[-1] != '/'):
outdir += '/'
create_dir(outdir)
create_dir("{}binned_kmers/".format(outdir))
create_dir("{}retained_binned_kmers_{}/".format(outdir, min_presence_count))
create_dir("{}retained_binned_kmers_{}/assemblywise/".format(outdir, min_presence_count))
create_dir("{}contig_lengths/".format(outdir))
create_dir("{}kmer_pairs_{}/".format(outdir, min_presence_count))
create_dir("{}grouped_pairs/".format(outdir))
create_dir("{}collinear_blocks/".format(outdir))
create_dir("{}oll/".format(outdir))
create_dir("{}assemblywise_blocks/".format(outdir))
create_dir("{}neighbour_pairs/".format(outdir))
create_dir("{}k_neighbours/".format(outdir))
create_dir("{}metablocks/".format(outdir))
create_dir("{}structural_variants/".format(outdir))
create_dir("{}paired_variants/".format(outdir))
assembly_count = len(assemblies)
step = math.ceil(assembly_count/(float)(ncores))
assembly_partition_pos_arr = np.arange(step, assembly_count, step)
core_idx = 0
partition_start = 0
for partition_end in assembly_partition_pos_arr:
opstr = '\n'.join(fasta_file_list[partition_start:partition_end])+'\n'
write_file("{}input_binned_assemblies_{}.txt".format(outdir, core_idx), opstr)
core_idx += 1
partition_start = partition_end
if(partition_start<assembly_count):
opstr = '\n'.join(fasta_file_list[partition_start:assembly_count])+'\n'
write_file("{}input_binned_assemblies_{}.txt".format(outdir, core_idx), opstr)
opstr = '\n'.join(fasta_file_list) + '\n'
write_file("{}all_assembly_filepaths.txt".format(outdir), opstr)
block_pair_step = math.ceil(assembly_count/(float)(block_pair_binned_partitions))
block_pair_partition_pos_list = [0]
core_idx = 0
partition_start = 0
partition_end = block_pair_step
while(partition_end < assembly_count):
if(use_oriented_links):
opstr = '\n'.join(oriented_links_file_list[partition_start:partition_end])+'\n'
write_file("{}ol_files_{}.txt".format(outdir, core_idx), opstr)
core_idx += 1
block_pair_partition_pos_list.append(partition_end)
partition_start = partition_end
partition_end += block_pair_step
# if(partition_end!=assembly_count):
if(use_oriented_links):
opstr = '\n'.join(oriented_links_file_list[partition_start:assembly_count])+'\n'
write_file("{}ol_files_{}.txt".format(outdir, core_idx), opstr)
block_pair_partition_pos_list.append(assembly_count)
# opstr = '\n'.join(assemblies)+'\n'
# write_file("{}input_assemblies.txt".format(outdir), opstr)
return outdir, np.concatenate([[0],assembly_partition_pos_arr]), np.array(block_pair_partition_pos_list)
def make_oriented_links_file_groups(oriented_links_file_list, partitions, assembly_count, outdir):
step = math.ceil(assembly_count/(float)(partitions))
# ol_partition_pos_arr = np.arange(step, assembly_count, step)
ol_partition_pos_list = []
group_idx = 0
partition_start = 0
while(partition_start < assembly_count):
opstr = '\n'.join(oriented_links_file_list[partition_start:min((partition_start+step),assembly_count)])+'\n'
write_file("{}ol_files_{}.txt".format(outdir, group_idx), opstr)
group_idx += 1
ol_partition_pos_list.append(partition_start)
partition_start += step
# if((partition_start+1) < assembly_count):
# opstr = '\n'.join(oriented_links_file_list[partition_start:assembly_count])+'\n'
# write_file("{}ol_files_{}.txt".format(outdir, group_idx), opstr)
ol_partition_pos_list.append(assembly_count)
return np.array(ol_partition_pos_list)
def presence_vector_files(hash_string, hash_string_idx, in_dir, outdir='.'):
cmd = "ls {}{}* > {}{}_group_files".format(in_dir, hash_string, outdir, hash_string_idx)
print("presence_vector_files : ", cmd)
try:
p = subprocess.Popen(cmd, shell=True)
p.wait()
print("presence_vector_files created:", hash_string)
except Exception as e:
print("presence_vector_files :", cmd, e)
def combine_filemaps(in_dir, outdir='.'):
cmd = "echo {}filemap_* | xargs cat > {}combined_map.csv 2>/dev/null".format(in_dir, outdir)
print("combine_filemaps : ", cmd)
try:
p = subprocess.Popen(cmd, shell=True)
p.wait()
print("combine_filemaps combined")
except Exception as e:
print("combine_filemaps error :", cmd, e)
def get_intermediate_filemaps(filenames_str, outfilename):
cmd = "cat {} > {} 2>/dev/null".format(filenames_str, outfilename)
rm_cmd = "rm -f {}".format(filenames_str)
# print("get_intermediate_filemaps : ", cmd)
print("get_intermediate_filemaps : ", outfilename)
try:
p = subprocess.Popen(cmd, shell=True)
p.wait()
print("get_intermediate_filemaps combined")
p = subprocess.Popen(rm_cmd, shell=True)
p.wait()
except Exception as e:
print("get_intermediate_filemaps error :", cmd, e)
def combine_intermediate_filemaps(in_dir, outdir='.'):
cmd = "echo {}intermediate_combined_* | xargs cat > {}final_combined_map.csv 2>/dev/null".format(in_dir, outdir)
rm_cmd = "echo {}intermediate_combined_* | xargs rm -rf".format(in_dir)
# print("combine_filemaps : ", cmd)
print("combine_filemaps : ", outdir)
try:
p = subprocess.Popen(cmd, shell=True)
p.wait()
print("combine_intermediate_filemaps combined")
p = subprocess.Popen(rm_cmd, shell=True)
p.wait()
except Exception as e:
print("combine_intermediate_filemaps error :", cmd, e)
def vertical_combine_filemaps(filenames_str, outfilename, merge_separator=','):
cmd = "echo {}| xargs paste -d{} > {}".format(filenames_str, merge_separator, outfilename)
print("vertical_combine_filemaps : ", cmd)
# rm_cmd = "rm -f {}".format(filenames_str)
try:
p = subprocess.Popen(cmd, shell=True)
p.wait()
print("vertical_combine_filemaps combined")
# p = subprocess.Popen(rm_cmd, shell=True)
# p.wait()
except Exception as e:
print("vertical_combine_filemaps error :", cmd, e)
def sv_cov_combine_header(input_file, cov_file, outfilename, merge_separator=','):
cmd = "cut -d, -f1 {} | paste -d, - {} | sed '1i Sample_name,SV_genome_coverage(%),SV_count' > {}".format(input_file, cov_file, outfilename)
rm_cmd = "rm -rf {}".format(cov_file)
print("sv_cov_combine_header : ", cmd)
try:
p = subprocess.Popen(cmd, shell=True)
p.wait()
print("sv_cov_combine_header combined")
p = subprocess.Popen(rm_cmd, shell=True)
p.wait()
except Exception as e:
print("sv_cov_combine_header error :", cmd, e)
def get_hamming_distance(df, assembly_count, start_idx=1, end_idx=-1):
nrows = df.shape[0]
hamming_dist_mat = np.zeros((assembly_count, assembly_count))
for i in range(start_idx-1, end_idx):
for j in range(start_idx, assembly_count):
pos = np.logical_xor(df[df.columns[i]], df[df.columns[j]])
val = np.sum(df.blocks_count[pos])
hamming_dist_mat[i][j] = val
hamming_dist_mat[j][i] = val
print("get_hamming_distance", start_idx, end_idx)
# print(hamming_dist_mat)
return hamming_dist_mat
def get_weighted_hamming_distance(df, assembly_count, start_idx=1, end_idx=-1):
nrows = df.shape[0]
hamming_dist_mat = np.zeros((assembly_count, assembly_count))
for i in range(start_idx-1, end_idx):
for j in range(start_idx, assembly_count):
pos = np.logical_xor(df[df.columns[i]], df[df.columns[j]])
val = np.sum(df.total_blocks_length[pos])
hamming_dist_mat[i][j] = val
hamming_dist_mat[j][i] = val
print("get_weighted_hamming_distance", start_idx, end_idx)
# print(hamming_dist_mat)
return hamming_dist_mat
def generate_column_vector(filename, col_idx, outfilename):
cmd = "cut -d, -f{} {} > {}".format(col_idx, filename, outfilename)
print("generate_column_vector started:", cmd)
try:
p = subprocess.Popen(cmd, shell=True)
p.wait()
print("generate_column_vector ended:", col_idx)
except Exception as e:
print("generate_column_vector error:", cmd, e)
def generate_start_indices(filename, col_idx, outfilename):
cmd = "cut -d, -f{} {} | awk '{{total += $0; $0 = total - $0}}1' > {}".format(col_idx, filename, outfilename)
print("generate_start_indices started:", cmd)
try:
p = subprocess.Popen(cmd, shell=True)
p.wait()
print("generate_start_indices ended:", col_idx)
except Exception as e:
print("generate_start_indices error:", cmd, e)
def get_total_block_count(filename, col_idx):
cmd = "cut -d, -f{} {} | awk '{{ sum += $1 }} END {{ print sum }}'".format(col_idx, filename)
print("get_total_block_count: ", cmd)
try:
p = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
out, error = p.communicate()
print(out, error)
return out.decode("utf-8").strip()
except Exception as e:
print("get_total_block_count ERROR: ", cmd, e)
def retain_presence_vectors(filename, col_idx_str, outfilename):
cmd = "cut -d, -f{} --complement {} > {}".format(col_idx_str, filename, outfilename)
print("retain_presence_vectors started:", cmd)
try:
p = subprocess.Popen(cmd, shell=True)
p.wait()
print("retain_presence_vectors ended:", col_idx_str)
except Exception as e:
print("retain_presence_vectors error:", cmd, e)
def get_pricipal_components_count(model, min_explained_variance=0.8):
cumsum = 0
for idx, val in enumerate(model.explained_variance_ratio_):
cumsum += val
if(cumsum>=min_explained_variance):
print(idx, cumsum)
return idx
break
def get_kmeans_elbow_point(dim_reduced_data, linearity_limiting_threshold=1.1):
previous_slope = np.inf
previous_sum_of_sq = np.inf
k = 0
while(True):
k += 1
print(k)
km = KMeans(n_clusters=k)
km = km.fit(X)
current_sum_of_sq = km.inertia_
if(k==1):
previous_sum_of_sq = current_sum_of_sq
continue
else:
current_slope = previous_sum_of_sq - current_sum_of_sq
if(previous_slope <= linearity_limiting_threshold*current_slope):
return k-2
previous_slope = current_slope
previous_sum_of_sq = current_sum_of_sq
def kmeans_wrapper(X, dim_reduce_model, min_explained_variance=0.8, linearity_limiting_threshold=1.1):
dim_reduce_model.fit(X)
n_principal_components = get_pricipal_components_count(dim_reduce_model, min_explained_variance)
X_dim_reduce = dim_reduce_model.transform(X)
n_clusters = get_kmeans_elbow_point(X_dim_reduce[:,:n_principal_components], linearity_limiting_threshold)
kmeans = KMeans(n_clusters=n_clusters)
kmeans = kmeans.fit(X_dim_reduce[:,:n_principal_components])
return kmeans, n_clusters
def generate_hamming_distance_dendrogram(hamming_distance_mat, labels, save_plot=True, reference='', outdir='',
show_plot=False, figsize=(12,60), leaf_font_size=9, logtransform=False):
if(logtransform):
hamming_distance_mat = np.log(hamming_distance_mat+np.ones(hamming_distance_mat.shape))
Z = linkage(hamming_distance_mat)
fig, ax = plt.subplots(figsize=figsize)
dendrogram(Z, labels=labels, orientation='left', ax=ax, leaf_font_size=leaf_font_size)
colored_labels = ax.get_ymajorticklabels()
for label in colored_labels:
text = label.get_text()
if(':R' in text):
color = 'red'
elif(':S' in text):
color = 'blue'
else:
color = 'black'
label.set_color(color)
plt.tight_layout()
if(show_plot):
plt.show()
if(save_plot):
outfile = '{}hamming_distance_{}'.format(outdir, len(labels))
if(len(reference)>0):
outfile += '_{}'.format(reference)
if(logtransform):
outfile += '_logtransformed'
outfile += '.png'
fig.savefig(outfile, dpi=fig.dpi, bbox_inches="tight")
def str2bool(v):
return v.lower() in ("y", "yes", "true", "t", "1")
def load_distance_edge_weighted_sparse_connectivity_submatrix(knn_subgraph_dir, partition_idx, current_partition_block_start,
total_blocks_count, blocks_per_partition):
knn_subgraph_file = knn_subgraph_dir + str(partition_idx)
lines = read_file(knn_subgraph_file)
current_block_count = blocks_per_partition
if(current_partition_block_start >= total_blocks_count):
current_block_count = 0
elif(current_partition_block_start+blocks_per_partition > total_blocks_count):
current_block_count = total_blocks_count - current_partition_block_start
print("load_distance_edge_weighted_sparse_connectivity_submatrix: ",
knn_subgraph_file, len(lines), current_block_count)
connectivity_submatrix = dok_matrix((current_block_count, total_blocks_count), dtype=np.uint16)
if(len(lines)==0):
return partition_idx, connectivity_submatrix
# block_idx_offset = int(lines[0].split(',')[0])
print("\t\t",lines[0])
print("\t\t", lines[-1])
for line in lines:
lsplit = line.split(',')
block_1_idx = int(lsplit[0])-current_partition_block_start #block_idx_offset
loc = 1
while(loc < len(lsplit)):
neighbour_block = int(lsplit[loc])
edge_weight = int(lsplit[loc+1])
connectivity_submatrix[block_1_idx, neighbour_block] = edge_weight
loc += 2
if(len(connectivity_submatrix.keys())%1000 == 0):
print('\t\t', knn_subgraph_file, len(connectivity_submatrix.keys()))
print('\t', knn_subgraph_file, len(connectivity_submatrix.keys()))
return partition_idx, connectivity_submatrix
def run_bfs_in_parallel(start_candidates):
for node in start_candidates:
if(node in remaining_nodes):
current_queue = [node]
current_component_nodes = set()
while(len(current_queue)>0):
current_component_nodes.add(current_queue[0])
edges = mst_birectional[current_queue[0], :]
for e in edges.indices:
if(e not in current_component_nodes):
current_queue.append(e)
current_queue.pop(0)
if(len(current_component_nodes)>0):
min_node = min(current_component_nodes)
if(min_node not in active_nodes):
active_nodes.add(min_node)
# lock.acquire()
remaining_nodes.difference_update(current_component_nodes)
all_connected_components.append(list(current_component_nodes))
# active_nodes.remove(min_node)
# lock.release()
def save_component_groups(comp_start_idx, comp_end_idx, filename):
outstring = "{}\n".format(comp_start_idx)
for idx in range(comp_start_idx, comp_end_idx):
outstring += ",".join(np.sort(all_connected_components[idx]).astype(str)) + "\n"
outstring += ",".join(all_connected_components_presence_mat[idx].astype(np.uint8).astype(str)) + "\n"
write_file(filename, outstring)
if __name__ == "__main__":
# parser = argparse.ArgumentParser(description='PRAWNS: Pan-genome RepresentAtion of Whole geNomeS tool')
parser = argparse.ArgumentParser(description='PRAWNS: Pan-genome representation of whole genomes tool', prog='PRAWNS')
parser.add_argument('-i', '--input', required=True, help="Input csv file")
parser.add_argument('-n', '--ncores', type=int, nargs='?', default=8, help="Number of cores to be used (default: 8)")
parser.add_argument('-K', '--kmer_len', type=int, nargs='?', default=25, help="Length of kmers (default: 25)")
parser.add_argument('-o', '--outdir', nargs='?', default="PRAWNS_results", help="Output directory")
parser.add_argument('-p', '--min_perc', type=float, nargs='?', default=5.0, help="Minimum %% of genomes a variant would be present in (default: 5.0)")
parser.add_argument('-l', '--use_oriented_links', type=str2bool, nargs='?', default=False, const=True, help="Use MetaCarvel oriented links; " +
"if True, 3rd column in input csv should be path to oriented links of corresponding assembly (default: False)")
parser.add_argument('-b', '--min_group_blocks', type=int, nargs='?', default=3, help="Minimum number of exact matching regions (blocks) that " +
"can be grouped into metablocks across the genomes (default: 3)")
parser.add_argument('-M', '--max_metablock_mismatch', type=int, nargs='?', default=25, help="Maximum number of mismatches permitted to allow " +
"merger and extension of metablocks across the genomes (default: 25)")
parser.add_argument('-N', '--max_neighbor_distance', type=int, nargs='?', default=25, help="Maximum separation between neighboring blocks " +
"for collocated blocks (components) identification (default: 5)")
# parser.add_argument('-s', '--min_block_size', type=int, nargs='?', default=50, help="Smallest size of a block that is to be retained as a " +
# "structural variant (default: 50)")
parser.add_argument('-s', '--min_block_size', type=int, nargs='?', default=50, help="Smallest size of a block retained as a " +
"conserved region (default: 50)")
# parser.add_argument('-R', '--max_pairing_range', type=int, nargs='?', default=100, help="Maximum number of bases between the structural variants " +
# "from a genome for paired analysis (default: 100)")
# parser.add_argument('-S', '--max_intervariant_separation', type=int, nargs='?', default=50, help="Maximum number of bases between the structural variants " +
# "from a genome for paired analysis (default: 50)")
parser.add_argument('-S', '--max_intervariant_separation', type=int, nargs='?', default=50, help="Maximum number of bases between adjacent conserved regions " +
"from a genome to get paired regions (default: 50)")
parser.add_argument('-m', '--mem', nargs='?', default="36000MB", help="Upper limit for RAM memory usage. " +
"Can be in mb/MB/gb/GB/tb/TB (case insensitive), default unit is MB. (default: 36000MB)")
parser.add_argument('-g', '--genome_len', nargs='?', default="4M", help="Average genome length. " +
"Can be in k/K/m/M/g/G (case insensitive), default unit is M, i.e. 1x10^6 nt. (default: 4M)")
parser.add_argument('-V', '--version', action='version', version='%(prog)s '+__version__)
args = parser.parse_args()
# def main(args):
ncores = args.ncores #8 # 5
input_pd = pd.read_csv(args.input, header=None)
input_assemblies = input_pd[input_pd.columns[0]].values
fasta_filepaths = input_pd[input_pd.columns[1]].values
kmer_len = args.kmer_len
outdir = args.outdir
prefix_len = 5 ## Fixed kmer prefix length
min_presence_perc = args.min_perc
prefix_count = pow(4, prefix_len)
min_presence_count = math.ceil(len(input_assemblies)*min_presence_perc/100.0)
use_oriented_links = args.use_oriented_links #True
assembly_count = len(input_assemblies)
# feature_partitions = max(ncores, math.ceil(assembly_count/10))
genome_len = args.genome_len
if(genome_len.isdigit()):
genome_len_mb = int(genome_len)
else:
val = genome_len[:-1]
units = genome_len[-1]
assert(val.isdigit())
val = int(val)
assert(units in set(['k', 'K', 'm', 'M', 'g', 'G']) )
# assert(units[0].isalpha() and units[1].isalpha())
units = units.upper()
if(units=='M'):
genome_len_mb = val
elif(units=='G'):
genome_len_mb = val*1000
else: # K
genome_len_mb = val/1000
mem = args.mem
if(mem.isdigit()):
available_memory = int(mem)
else:
assert(len(mem)>2)
val = mem[:-2]
units = mem[-2:]
assert(val.isdigit())
val = int(val)
assert(units[0] in set(['m', 'M', 'g', 'G', 't', 'T']) and units[1] in set(['b', 'B']))
# assert(units[0].isalpha() and units[1].isalpha())
units = units.upper()
if(units[0]=='M'):
available_memory = val
elif(units[0]=='G'):
available_memory = val*1000
else:
available_memory = val*1000000
# max_assemblies_per_partition = available_memory/ncores - 2500
# if(max_assemblies_per_partition < 10):
# max_assemblies_per_partition = 10
# else:
# max_assemblies_per_partition = math.floor(math.sqrt(max_assemblies_per_partition/genome_len_mb))
# max_assemblies_per_partition = max(10, max_assemblies_per_partition)
# max_assemblies_per_partition = (available_memory/ncores - 2250)
max_assemblies_per_partition = (available_memory/ncores - 1024)
# max_assemblies_per_partition = (available_memory/ncores - 512)
if(max_assemblies_per_partition < 2):
max_assemblies_per_partition = 2
else:
# max_assemblies_per_partition = math.floor(math.sqrt(max_assemblies_per_partition/genome_len_mb))
# max_assemblies_per_partition = math.floor(math.sqrt(max_assemblies_per_partition/(4*genome_len_mb)))
# max_assemblies_per_partition = math.floor(max_assemblies_per_partition/16*genome_len_mb)
max_assemblies_per_partition = math.floor(max_assemblies_per_partition/(20*genome_len_mb))
max_assemblies_per_partition = max(2, max_assemblies_per_partition)
feature_partitions = max(ncores, math.ceil(assembly_count/max_assemblies_per_partition))
assemblies_per_partition = math.ceil(assembly_count/feature_partitions)
min_component_blocks = args.min_group_blocks
# max_inter_block_pair_separation = args.max_pairing_range
max_inter_block_pair_separation = args.max_intervariant_separation
min_block_size = args.min_block_size
max_metablock_mismatch = args.max_metablock_mismatch
# k_neighbours = 4
# max_neighbour_separation = 5
max_neighbour_separation = args.max_neighbor_distance
k_neighbours = round(math.sqrt(max_neighbour_separation)) + 2
# block_pair_partitions = max(feature_partitions, math.ceil(assembly_count/4.0))
# block_pair_partitions = max(feature_partitions, math.ceil(assembly_count/ncores))
block_pair_partitions = feature_partitions
seq2write_batch = 1000
if(use_oriented_links):
oriented_links_paths = input_pd[input_pd.columns[2]].values
uol=1
else:
uol=0
oriented_links_paths = []
print(ncores, input_pd.shape, kmer_len, min_presence_perc, min_presence_count, use_oriented_links, assembly_count, feature_partitions,
block_pair_partitions, available_memory, max_inter_block_pair_separation, k_neighbours, max_neighbour_separation)
results_dir, binned_assembly_arr, block_pair_partition_pos_arr = cpp_dir_input_setup( input_assemblies, fasta_filepaths, ncores,
feature_partitions, min_presence_count, use_oriented_links,
oriented_links_paths, outdir)
print(binned_assembly_arr)
print(block_pair_partition_pos_arr)
out_str = "#genomes: {}\n".format(len(input_assemblies))
out_str += "kmer_len: {}\n".format(kmer_len)
out_str += "min_perc: {}\n".format(min_presence_perc)
out_str += "#cores: {}\n".format(ncores)
out_str += "min_presence_count: {}\n".format(min_presence_count)
out_str += "use_oriented_links: {}\n".format(use_oriented_links)
out_str += "available_memory: {}\n".format(available_memory)
out_str += "min_group_blocks: {}\n".format(min_component_blocks)
out_str += "max_pairing_range: {}\n".format(max_inter_block_pair_separation)
out_str += "max_metablock_mismatch: {}\n".format(max_metablock_mismatch)
out_str += "min_block_size: {}\n".format(min_block_size)
out_str += "k_neighbours: {}\n".format(k_neighbours)
out_str += "max_neighbour_separation: {}\n".format(max_neighbour_separation)
out_str += "genome_len: {}\n".format(genome_len)
pool = Pool(processes=ncores)
start = time.time() # timeit.timeit()
# for core_idx in range(min(ncores, len(binned_assembly_arr))):
for core_idx in range(len(binned_assembly_arr)):
pool.apply_async(run_cpp_binaries, args=("./kmer_positional_binning.o", "{}input_binned_assemblies_{}.txt".format(results_dir, core_idx),
kmer_len, "{}binned_kmers/".format(results_dir), binned_assembly_arr[core_idx],
"{}contig_lengths/".format(results_dir)))
pool.close()
pool.join()
end = time.time() # timeit.timeit()
print('TIME taken to bin kmers from all files:', end-start)
# start = time.time()
# Parallel(n_jobs=ncores, prefer="threads")(
# delayed(run_cpp_binaries)( "./kmer_pair_positional_binning.o", "{}input_binned_assemblies_{}.txt".format(results_dir, core_idx),
# kmer_len, "{}kmer_pairs_{}/".format(results_dir, min_presence_count), binned_assembly_arr[core_idx],
# "{}contig_lengths/".format(results_dir), prefix_count, feature_partitions)
# for core_idx in range(len(binned_assembly_arr)))
# end = time.time() # timeit.timeit()
# print('TIME taken to generate binned kmer pairs:', end-start)
pool = Pool(processes=ncores)
start = time.time() # timeit.timeit()
for prefix_idx in range(prefix_count):
pool.apply_async(run_cpp_binaries, args=("./kmer_filtering.o", assembly_count, prefix_idx, "{}binned_kmers/".format(results_dir),
min_presence_count, "{}retained_binned_kmers_{}/".format(results_dir, min_presence_count)))
pool.close()
pool.join()
end = time.time() # timeit.timeit()
print('TIME taken to get kmers present in at least {} perc of input files:'.format(min_presence_perc), end-start)
pool = Pool(processes=ncores)
start = time.time() # timeit.timeit()
for assembly_idx in range(assembly_count):
pool.apply_async(run_cpp_binaries, args=("./kmer_pair_generator.o", assembly_idx, prefix_count,
"{}binned_kmers/".format(results_dir),
"{}retained_binned_kmers_{}/".format(results_dir, min_presence_count),
"{}retained_binned_kmers_{}/assemblywise/".format(results_dir, min_presence_count),
"{}kmer_pairs_{}/".format(results_dir, min_presence_count), feature_partitions))
pool.close()
pool.join()
end = time.time() # timeit.timeit()
print('TIME taken to generate kmer pairs files:', end-start)
pool = Pool(processes=ncores)
start = time.time() # timeit.timeit()
for partition_idx in range(feature_partitions): # higher partition indices tend to have higher number of kmer pairs mapped
pool.apply_async(run_cpp_binaries, args=("./kmer_pair_grouping.o", feature_partitions - 1 - partition_idx,
"{}kmer_pairs_{}/".format(results_dir, min_presence_count), assembly_count,
"{}grouped_pairs/".format(results_dir), min_presence_count, kmer_len))
pool.close()
pool.join()
end = time.time() # timeit.timeit()
print('TIME taken to generate grouped kmer pairs per partition:', end-start)
# start = time.time()
# offset = max(math.ceil(min(feature_partitions/ncores, available_memory/10*ncores)), ncores)
# offset_range = math.ceil(feature_partitions/offset)
# Parallel(n_jobs=ncores, prefer="threads")(
# delayed(run_cpp_binaries)( "./kmer_pair_grouper.o", feature_partitions, offset_idx, offset,
# "{}kmer_pairs_{}/".format(results_dir, min_presence_count), assembly_count,
# "{}grouped_pairs/".format(results_dir), min_presence_count, kmer_len)
# for offset_idx in range(offset_range))
# end = time.time() # timeit.timeit()
# print('TIME taken to generate grouped kmer pairs per partition:', end-start)
hash_strings = np.unique([filename.split('_')[-1] for filename in glob.glob("{}grouped_pairs/group_files_*".format(results_dir))])
pool = Pool(processes=ncores)
start = time.time() # timeit.timeit()
for hash_idx, hash_string in enumerate(hash_strings):
pool.apply_async(run_cpp_binaries, args=("./kmer_block_constructor.o", hash_string,
"{}grouped_pairs/group_files_{}".format(results_dir, hash_string),
assembly_count, kmer_len, "{}collinear_blocks/".format(results_dir)))
pool.close()
pool.join()
end = time.time() # timeit.timeit()
print('TIME taken to merge kmer pairs to form blocks:', end-start)
pool = Pool(processes=ncores)
start = time.time() # timeit.timeit()
part_size = min(1250, len(hash_strings)/ncores) ## TO DO: Choice for optimal number of files to concat simultaneously
hash_partitions = np.arange(0, len(hash_strings), part_size)
hash_partitions = [math.floor(t) for t in hash_partitions]
hash_partitions.append(len(hash_strings))
hash_partitions = np.unique(hash_partitions)
print(hash_partitions)
for idx in range(1,len(hash_partitions)):
instr = ' '.join(['{}collinear_blocks/filemap_{}'.format(results_dir, hash_str)
for hash_str in hash_strings[hash_partitions[idx-1]:hash_partitions[idx]]])
outfile = '{}collinear_blocks/intermediate_combined_{}'.format(results_dir, idx)
pool.apply_async(get_intermediate_filemaps, args=(instr, outfile))
pool.close()
pool.join()
combine_intermediate_filemaps('{}collinear_blocks/'.format(results_dir), '{}collinear_blocks/'.format(results_dir))
end = time.time() # timeit.timeit()
print('TIME taken to merge filemaps:', end-start)
filemap_combined_filename = '{}collinear_blocks/final_combined_map.csv'.format(results_dir)
pool = Pool(processes=ncores)
for assembly_idx in range(assembly_count):
pool.apply_async(generate_column_vector, args=(filemap_combined_filename, assembly_idx+1, "{}col_{}.txt".format(results_dir, assembly_idx)))
pool.close()
pool.join()
paths_filename = '{}merged_filemap_paths.txt'.format(results_dir)
start_block_indices_filename = '{}merged_filemap_start_block_indices.txt'.format(results_dir)
if ncores>1:
w = 2
else:
w = 1
pool = Pool(processes=w)
pool.apply_async(generate_column_vector, args=(filemap_combined_filename, assembly_count+1, paths_filename))
pool.apply_async(generate_start_indices, args=(filemap_combined_filename, assembly_count+2, start_block_indices_filename))
pool.close()
pool.join()
total_blocks_count = int(get_total_block_count(filemap_combined_filename, assembly_count+2))
# block_pair_partitions = max(block_pair_partitions, math.ceil(total_blocks_count*(2 + np.log2(ncores))/available_memory)) #/5000))
length_based_adjustment = 1
if(genome_len_mb > 4):
length_based_adjustment = genome_len_mb/4
# block_pair_partitions = max(block_pair_partitions, math.ceil(total_blocks_count*(1.5 + np.log2(ncores))*length_based_adjustment/available_memory)) #/5000))
# block_pair_partitions = max(block_pair_partitions, math.ceil((total_blocks_count*4*ncores)/(available_memory*max_assemblies_per_partition))) #/5000))
# block_pair_partitions = max(block_pair_partitions, math.ceil((total_blocks_count*8*ncores)/(available_memory*100))) #/5000))
# block_pair_partitions = max(block_pair_partitions, math.ceil((total_blocks_count*ncores)/(available_memory*4))) #/5000))
block_pair_partitions = max(block_pair_partitions, math.ceil((total_blocks_count*ncores*assemblies_per_partition)/(available_memory*64))) #/5000))
block_pair_partitions = math.ceil(block_pair_partitions/ncores)*ncores
print("Total individual blocks count:", total_blocks_count)
print("Modified block_pair_partitions count:", block_pair_partitions)
print("Available Memory:", available_memory)
out_str += "\n\nTotal individual block count: {}\n".format(total_blocks_count)
# max_pairs_before_dump_limit = math.floor((available_memory - total_blocks_count*ncores*1000)/(1000))
# print("max_pairs_before_dump_limit Memory:", max_pairs_before_dump_limit)
# max_pairs_before_dump_limit = math.floor((36000000000 - total_blocks_count*ncores*1000)/(1000))
# Another approximation: if memory is given in MB ==> max pairs = (mem*1000*1000 - total_blocks_count*ncores*1000)/(ncores*100)
# max_pairs_before_dump_limit = math.floor((available_memory-1500)*8000/ncores) - math.ceil(total_blocks_count*10*(1 + np.log10(ncores)))
# print("max_pairs_before_dump_limit Memory:", max_pairs_before_dump_limit)
limit_cores = math.floor(available_memory/(total_blocks_count/1000 + 100*genome_len_mb + 1000))
if(limit_cores < 2):
limit_cores = 2
pool = Pool(processes=min(ncores, limit_cores))
start = time.time() # timeit.timeit()
for idx in range(1, len(block_pair_partition_pos_arr)):
if(use_oriented_links):
pool.apply_async(run_cpp_binaries, args=("./kmer_block_and_neighbours_locator.o", "{}col_".format(results_dir), block_pair_partition_pos_arr[idx-1],
block_pair_partition_pos_arr[idx]-1, paths_filename, start_block_indices_filename, feature_partitions,
block_pair_partitions, total_blocks_count, "{}kmer_pairs_{}/".format(results_dir, min_presence_count),
"{}assemblywise_blocks/".format(results_dir), kmer_len, "{}contig_lengths/".format(results_dir), k_neighbours-1,
max_neighbour_separation, "{}neighbour_pairs/".format(results_dir), min_block_size, uol,
"{}ol_files_{}.txt".format(results_dir, idx-1), "{}oll/".format(results_dir)))
else:
pool.apply_async(run_cpp_binaries, args=("./kmer_block_and_neighbours_locator.o", "{}col_".format(results_dir), block_pair_partition_pos_arr[idx-1],
block_pair_partition_pos_arr[idx]-1, paths_filename, start_block_indices_filename, feature_partitions,
block_pair_partitions, total_blocks_count, "{}kmer_pairs_{}/".format(results_dir, min_presence_count),
"{}assemblywise_blocks/".format(results_dir), kmer_len, "{}contig_lengths/".format(results_dir), k_neighbours-1,
max_neighbour_separation, "{}neighbour_pairs/".format(results_dir), min_block_size, uol))
pool.close()
pool.join()
end = time.time() # timeit.timeit()
print('TIME taken to locate neighbour pairs per partition:', end-start)
Parallel(n_jobs=ncores, prefer="threads")(
delayed(run_cpp_binaries)("./remove_files.o", paths_filename, core_idx, ncores)
for core_idx in range(ncores))
end = time.time() # timeit.timeit()
print('TIME taken to remove collinear block files:', end-start)
pool = Pool(processes=ncores)
start = time.time() # timeit.timeit()
for partition_idx in range(block_pair_partitions):
pool.apply_async(run_cpp_binaries, args=("./kmer_k_neigbour_subgraph_generator.o", k_neighbours, assembly_count, partition_idx,
min_presence_count, "{}neighbour_pairs/".format(results_dir), "{}k_neighbours/".format(results_dir)))
pool.close()
pool.join()
end = time.time() # timeit.timeit()
print('TIME taken to k nearest neighbour subgraphs:', end-start)
blocks_per_partition = math.ceil(total_blocks_count/block_pair_partitions)
part_arr = np.arange(0, total_blocks_count, blocks_per_partition)
pool = Pool(processes=ncores)
start = time.time() # timeit.timeit()
subgraphs_results = []
for partition_idx, current_partition_block_start in enumerate(part_arr):
subgraphs_results.append(pool.apply_async(load_distance_edge_weighted_sparse_connectivity_submatrix,
args=("{}k_neighbours/".format(results_dir), partition_idx,
current_partition_block_start, total_blocks_count,
blocks_per_partition)))
pool.close()
pool.join()
end = time.time() # timeit.timeit()
print('TIME taken to load k-nearest connectivity submatrices:', end-start)
stack_order = np.argsort([mat.get()[0] for mat in subgraphs_results])
print(stack_order)
connectivity_matrix = subgraphs_results[stack_order[0]].get()[1]
for idx in stack_order[1:]:
connectivity_matrix = scipy.sparse.vstack([connectivity_matrix, subgraphs_results[idx].get()[1]])
print(idx, subgraphs_results[stack_order[idx]].get()[1].shape, connectivity_matrix.shape)
connectivity_mat_csr = connectivity_matrix.tocsr()
# Asymetry removal eliminates the cases where block 1 is a neighbor for block 2 but not vice versa
# Particularly required in cases such as:
# Assemblies having: -------[REGION_1]--[REGION_2]-------
# Assemblies having: -------[REGION_1]-[REGION_3]-[REGION_2]-------
# Blocks at the ends of region 3 should not be considered to be neighbors of blocks from region 1 and 2
asymetry_remover = (connectivity_mat_csr!=0).astype(np.uint16)
connectivity_mat_csr_2 = connectivity_mat_csr.multiply(asymetry_remover.T)
print("Connectivity Matrix:", connectivity_mat_csr.nnz, connectivity_mat_csr_2.nnz)
mst = minimum_spanning_tree(connectivity_mat_csr_2)
mst_birectional = mst + mst.T
mst_birectional = mst_birectional.astype(np.uint16)
print("MST:", mst.nnz, mst_birectional.nnz)
start = time.time()
singleton_check = mst_birectional.sum(axis=0)
all_start_candidates = np.where((singleton_check!=0).tolist()[0])[0]
batch_size = math.ceil(len(all_start_candidates)/ncores)
print(len(all_start_candidates), batch_size)
print(np.sum((singleton_check==0).tolist()[0]))
start_candidates_arr = np.arange(0, len(all_start_candidates), batch_size)
start_candidates_arr = np.concatenate([start_candidates_arr, [len(all_start_candidates)]])
print(start_candidates_arr)
active_nodes = set()
remaining_nodes = set(all_start_candidates)
all_connected_components = []
# TODO: Can have collisions; resolve the issue of same component being traversed over separate cores
Parallel(n_jobs=ncores, prefer="threads", require='sharedmem')(
delayed(run_bfs_in_parallel)(
all_start_candidates[start_candidates_arr[core_idx]:start_candidates_arr[core_idx+1]])
for core_idx in range(ncores))
end = time.time() # timeit.timeit()
print('TIME taken to fetch all connected components:', end-start)
out_str += "\n\nTotal connected component count: {}\n".format(len(all_connected_components))
print(len(all_connected_components), len(active_nodes))
with open('{}all_connected_components.pkl'.format(results_dir), 'wb') as fp:
pickle.dump(all_connected_components, fp)
component_lengths = np.array([len(comp) for comp in all_connected_components])
print(len(component_lengths))
print(np.mean(component_lengths), np.median(component_lengths), np.std(component_lengths))
print(np.min(component_lengths), np.max(component_lengths))
print(Counter(component_lengths))
print()
print(np.sum(component_lengths>=10), np.sum(component_lengths>=100))
print()
individual_blocks_expanded = []
lines = read_file('{}collinear_blocks/final_combined_map.csv'.format(results_dir))
for line in lines:
lsplit = line.split(',')
current_presence = np.array([int(val) for val in lsplit[:-3]])
occurrence = int(lsplit[-2])
while(occurrence>0):
individual_blocks_expanded.append(current_presence)
# if(len(individual_blocks_expanded)%10000 == 0):
# print(len(individual_blocks_expanded))
occurrence -= 1
individual_blocks_expanded = np.array(individual_blocks_expanded, dtype=np.int8)
print(individual_blocks_expanded.shape)
start = time.time()
all_connected_components_presence_mat = []
min_component_blocks_presence_ratio = 0.75
for comp in all_connected_components:
comp_len = len(comp)
counts = np.sum(individual_blocks_expanded[np.array(comp)], axis=0)
valid_check_pos = np.logical_and(counts>0, counts<comp_len)
if(np.sum(valid_check_pos)>0):
quantile = np.percentile(counts[valid_check_pos], 90)
threshold = round(0.85*comp_len)
if(quantile < threshold and quantile > min_component_blocks_presence_ratio*comp_len):
threshold = round(quantile)
else:
threshold = comp_len
all_connected_components_presence_mat.append(counts>=threshold)
all_connected_components_presence_mat = np.array(all_connected_components_presence_mat)
print(all_connected_components_presence_mat.shape)
np.save('{}all_connected_components_presence_mat.npy'.format(results_dir), all_connected_components_presence_mat)
# with open('{}all_connected_components_presence_mat.pkl'.format(results_dir), 'wb') as fp:
# pickle.dump(all_connected_components_presence_mat, fp)
end = time.time() # timeit.timeit()
print('TIME taken to assign assemblywise presence of all connected components:', end-start)
# trimmed for components containing at least a certain number of blocks per component (min_group_blocks)
print("min_component_blocks: ", min_component_blocks)
all_connected_components = [component for component in all_connected_components if len(component)>=min_component_blocks]
print(len(all_connected_components))
all_connected_components_presence_mat = all_connected_components_presence_mat[component_lengths>=min_component_blocks]
print(all_connected_components_presence_mat.shape)
out_str += "\n\nConnected components retained count: {}\n".format(len(all_connected_components))
write_file('{}params.txt'.format(results_dir), out_str)
group_count = max(ncores, math.ceil(len(all_connected_components)*2/available_memory))
print(group_count)
grouped_components_count = math.ceil(len(all_connected_components)/group_count)
max_component_group_size = min(2000, math.floor(available_memory*1.5/ncores))
while(grouped_components_count > max_component_group_size):
group_count += ncores
grouped_components_count = math.ceil(len(all_connected_components)/group_count)
print(group_count, grouped_components_count)
comp_idx_arr = np.arange(0, all_connected_components_presence_mat.shape[0], grouped_components_count)
comp_idx_arr = np.concatenate([comp_idx_arr, [all_connected_components_presence_mat.shape[0]]])
print(comp_idx_arr)
Parallel(n_jobs=ncores, prefer="threads")(
delayed(save_component_groups)( comp_idx_arr[idx-1], comp_idx_arr[idx],
'{}comp_{}_trimmed_new_group_{}.txt'.format(results_dir, min_component_blocks, idx-1))
for idx in range(1, len(comp_idx_arr)))
start = time.time()
if(use_oriented_links):
Parallel(n_jobs=ncores, prefer="threads")(
delayed(run_cpp_binaries)("./kmer_metablock_constructor.o",
'{}comp_{}_trimmed_new_group_{}.txt'.format(results_dir, min_component_blocks, idx-1),
"{}assemblywise_blocks/".format(results_dir), max_metablock_mismatch, "{}contig_lengths/".format(results_dir),
assembly_count, math.ceil(assembly_count/feature_partitions), "{}metablocks/".format(results_dir), uol,
"{}oll/".format(results_dir))
for idx in range(1, len(comp_idx_arr)))
else:
Parallel(n_jobs=ncores, prefer="threads")(
delayed(run_cpp_binaries)("./kmer_metablock_constructor.o",
'{}comp_{}_trimmed_new_group_{}.txt'.format(results_dir, min_component_blocks, idx-1),
"{}assemblywise_blocks/".format(results_dir), max_metablock_mismatch, "{}contig_lengths/".format(results_dir),
assembly_count, math.ceil(assembly_count/feature_partitions), "{}metablocks/".format(results_dir), uol)
for idx in range(1, len(comp_idx_arr)))
end = time.time() # timeit.timeit()
print('TIME taken to generate metablocks:', end-start)
start = time.time()
if(use_oriented_links):
Parallel(n_jobs=ncores, prefer="threads")(