forked from wouterkool/attention-learn-to-route
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun.py
executable file
·1046 lines (828 loc) · 44.9 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#!/usr/bin/env python
import pprint as pp
import torch
import torch.optim as optim
from options import get_options
from nets.attention_model import AttentionModel
from nets.v_estimator import V_Estimator
from nets.v_estimator3 import V_Estimator3
from utils import load_problem
import tianshou as ts
from problems.tsp.tsp_env import TSP_env
from problems.tsp.tsp_env_optimized import TSP_env_optimized
#from problems.op.op_env import OP_env
from problems.op.op_env_optimized import OP_env_optimized
from torch.utils.tensorboard import SummaryWriter
from tianshou.data import to_torch, to_torch_as
from tianshou.utils import TensorboardLogger
from torch.optim.lr_scheduler import ExponentialLR, CyclicLR
import numpy as np
from nets.argmaxembed import ArgMaxEmbed
import time
import json
from custom_classes.random import RandomPolicy
from custom_classes.pg import PGPolicy_custom
from custom_classes.discrete_sac import DiscreteSACPolicy_custom
epoch_counter = 0
global_run_name = 'undefined'
def save_policy(policy):
torch.save(policy.state_dict(), f"policy_dir/{global_run_name}_{epoch_counter}.pth")
def update_epoch_counter(epoch):
global epoch_counter
epoch_counter = epoch
class Categorical_logits(torch.distributions.categorical.Categorical):
def __init__(self, logits, validate_args=None):
super(Categorical_logits, self).__init__(logits=logits, validate_args=validate_args)
def updatelog_eps_lr(decay_learning_rate, decay_epsilon, policy, eps, logger, epoch, lr_scheduler=None, env_step=None, batch_size=None, log=False):
update_epoch_counter(epoch)
if decay_epsilon:
policy.set_eps(eps)
if log:
logger.write("train/epsilon", epoch, {'Epsilon':eps})
if lr_scheduler is not None:
if decay_learning_rate:
lr_scheduler.step()
if log:
logger.write("train/lr", env_step, {'LR':lr_scheduler.get_last_lr()[0]})
def updatelog_lr(decay_learning_rate, logger, lr_schedulers=None, env_step=None, log=False, labels=None):
if decay_learning_rate and lr_schedulers is not None:
for scheduler in lr_schedulers:
scheduler.step()
if log:
for scheduler, label in zip(lr_schedulers, labels):
logger.write("train/lr", env_step, {label: scheduler.get_last_lr()[0]})
def run_DQN(opts, logger):
problem = load_problem(opts.problem)
problem_env_class = { 'tsp': TSP_env_optimized, 'op': OP_env_optimized }
actor = AttentionModel(
opts.embedding_dim,
opts.hidden_dim,
problem,
output_probs=False,
n_encode_layers=opts.n_encode_layers,
mask_inner=True,
mask_logits=True,
normalization=opts.normalization,
tanh_clipping=opts.tanh_clipping
).to(opts.device)
# https://discuss.pytorch.org/t/how-to-optimize-multi-models-parameter-in-one-optimizer/3603/6
learning_rate = opts.lr_actor # 5e-4
learning_rate_decay = opts.lr_decay # 0.99995
lr_scheduler_type = opts.lr_scheduler_type
decay_learning_rate = opts.decay_lr # False
decay_epsilon = opts.decay_eps # False
num_epochs = opts.n_epochs # 100
num_train_envs = opts.n_train_envs # 32 # has to be smaller or equal to episode_per_collect
episode_per_collect_factor = opts.epc_factor # 1
buffer_size_factor = opts.bs_factor # 20
epoch_size_factor = opts.es_factor # 100
num_test_envs = opts.n_test_envs # 1024 # has to be smaller or equal to num_test_episodes
test_episodes_factor = opts.te_factor # 1
gamma, n_step, target_freq = opts.gamma, opts.n_step, opts.target_freq # 1.00, 1, 100
eps_train, eps_test = opts.eps_train, opts.eps_test # 0.5, 0.2
# PER
num_of_buffer = num_train_envs # they can't differ, or VectorReplayBuffer will introduce bad data to training
episode_per_collect = num_train_envs * episode_per_collect_factor
if type(opts.graph_size) is list:
# make sure to collect enough. finished envs are reset and continue collecting - see tianshou/data/collector.py at line 366 of version 0.4.11
batch_size = max(opts.graph_size) * episode_per_collect # has to be smaller or equal to buffer_size, defines minibatch size in policy training
else:
batch_size = opts.graph_size * episode_per_collect
buffer_size = batch_size * buffer_size_factor
step_per_epoch = batch_size * epoch_size_factor
num_test_episodes = num_test_envs * test_episodes_factor # just collect this many episodes using policy and checks the performance
step_per_collect = batch_size
optimizer = optim.Adam([
{'params': actor.parameters(), 'lr': learning_rate}
])
lr_scheduler_options = {
'exp': ExponentialLR(optimizer, gamma=learning_rate_decay, verbose=False),
'cyclic': CyclicLR(optimizer, opts.cyc_base_lr, opts.cyc_max_lr, step_size_up=opts.cyc_step_size_up, step_size_down=opts.cyc_step_size_down, mode='triangular2', cycle_momentum=False)
}
lr_scheduler = lr_scheduler_options[opts.lr_scheduler_type]
# SubprocVectorEnv DummyVectorEnv
if type(opts.graph_size) is list:
train_problems = []
test_problems = []
for size in opts.graph_size:
train_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(opts.train_envs_per_size)]
test_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(opts.test_envs_per_size)]
else:
train_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(num_train_envs)]
test_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(num_test_envs)]
train_envs = ts.env.DummyVectorEnv(train_problems)
test_envs = ts.env.DummyVectorEnv(test_problems)
policy = ts.policy.DQNPolicy(actor, optimizer, gamma, n_step, target_update_freq=target_freq)
replay_buffer = ts.data.VectorReplayBuffer(total_size=buffer_size, buffer_num=num_of_buffer)
train_collector = ts.data.Collector(policy, train_envs, replay_buffer, exploration_noise=False)
test_collector = ts.data.Collector(policy, test_envs, exploration_noise=False)
def train_fn(epoch, env_step):
update_epoch_counter(epoch)
updatelog_eps_lr(decay_learning_rate, decay_epsilon, policy, eps_train/(epoch+1), logger, epoch, lr_scheduler=lr_scheduler, env_step=env_step, batch_size=batch_size, log=True)
result = ts.trainer.offpolicy_trainer( # DOESN'T work with PPO, which makes sense
policy, train_collector, test_collector, num_epochs, step_per_epoch, step_per_collect,
num_test_episodes, batch_size, update_per_step= 1 / step_per_collect,
train_fn=train_fn,
test_fn=lambda epoch, env_step: updatelog_eps_lr(decay_learning_rate, decay_epsilon, policy, eps_test/(epoch+1), logger, epoch, log=False),
save_best_fn=save_policy,
#stop_fn=lambda mean_rewards: mean_rewards >= env.spec.reward_threshold,
logger=logger
)
torch.save(policy.state_dict(), f"policy_dir/{opts.run_name}.pth")
#policy.load_state_dict(torch.load("policy.pth"))
def run_PG(opts, logger):
problem = load_problem(opts.problem)
problem_env_class = { 'tsp': TSP_env_optimized, 'op': OP_env_optimized }
actor = AttentionModel(
opts.embedding_dim,
opts.hidden_dim,
problem,
output_probs=False,
n_encode_layers=opts.n_encode_layers,
mask_inner=True,
mask_logits=True,
normalization=opts.normalization,
tanh_clipping=opts.tanh_clipping
).to(opts.device)
# https://discuss.pytorch.org/t/how-to-optimize-multi-models-parameter-in-one-optimizer/3603/6
learning_rate = opts.lr_actor # 5e-5 worked well
learning_rate_decay = opts.lr_decay # 0.9999
lr_scheduler_type = opts.lr_scheduler_type
decay_learning_rate = opts.decay_lr # False
num_epochs = opts.n_epochs # 100
num_train_envs = opts.n_train_envs # 32 # has to be smaller or equal to episode_per_collect
episode_per_collect_factor = opts.epc_factor # 1
epoch_size_factor = opts.es_factor # 100
num_test_envs = opts.n_test_envs # 1024 # has to be smaller or equal to num_test_episodes
test_episodes_factor = opts.te_factor # 1
gamma = opts.gamma # 1.00
repeat_per_collect = opts.repeat_per_collect # how many times to learn each batch
# custom PG loss # skipped, see run from 30th March, ~10:30am
Policy_class = PGPolicy_custom if opts.neg_PG else ts.policy.PGPolicy
num_of_buffer = num_train_envs # they can't differ, or VectorReplayBuffer will introduce bad data to training
episode_per_collect = num_train_envs * episode_per_collect_factor
if type(opts.graph_size) is list:
# make sure to collect enough. finished envs are reset and continue collecting - see tianshou/data/collector.py at line 366 of version 0.4.11
batch_size = max(opts.graph_size) * episode_per_collect # has to be smaller or equal to buffer_size, defines minibatch size in policy training
else:
batch_size = opts.graph_size * episode_per_collect
buffer_size = batch_size # no buffer_size_factor for onpolicy algorithms as buffer will be cleared after each network update
step_per_epoch = batch_size * epoch_size_factor
num_test_episodes = num_test_envs * test_episodes_factor # just collect this many episodes using policy and checks the performance
step_per_collect = batch_size
optimizer = optim.Adam([
{'params': actor.parameters(), 'lr': learning_rate},
])
lr_scheduler_options = {
'exp': ExponentialLR(optimizer, gamma=learning_rate_decay, verbose=False),
'cyclic': CyclicLR(optimizer, opts.cyc_base_lr, opts.cyc_max_lr, step_size_up=opts.cyc_step_size_up, step_size_down=opts.cyc_step_size_down, mode='triangular2', cycle_momentum=False)
}
lr_scheduler = lr_scheduler_options[opts.lr_scheduler_type]
# SubprocVectorEnv DummyVectorEnv
if type(opts.graph_size) is list:
train_problems = []
test_problems = []
for size in opts.graph_size:
train_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(opts.train_envs_per_size)]
test_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(opts.test_envs_per_size)]
else:
train_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(num_train_envs)]
test_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(num_test_envs)]
train_envs = ts.env.DummyVectorEnv(train_problems)
test_envs = ts.env.DummyVectorEnv(test_problems)
distribution_type = Categorical_logits
policy = Policy_class(model=actor,
optim=optimizer,
dist_fn=distribution_type,
discount_factor=gamma,
lr_scheduler=lr_scheduler if decay_learning_rate else None, # updates LR each policy update => with each batch 0.9997^(batches_per_epoch*epoch)
reward_normalization=False,
deterministic_eval=False)
replay_buffer = ts.data.VectorReplayBuffer(total_size=buffer_size, buffer_num=num_of_buffer)
train_collector = ts.data.Collector(policy, train_envs, replay_buffer, exploration_noise=False)
test_collector = ts.data.Collector(policy, test_envs, exploration_noise=False)
def train_fn(epoch, env_step):
update_epoch_counter(epoch)
logger.write("train/learning_rate", epoch, {'LR':lr_scheduler.get_last_lr()[0]})
result = ts.trainer.onpolicy_trainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=num_epochs,
step_per_epoch=step_per_epoch,
repeat_per_collect=repeat_per_collect,
episode_per_test=num_test_episodes,
batch_size=batch_size,
episode_per_collect=episode_per_collect,
train_fn=train_fn,
save_best_fn=save_policy,
logger=logger
)
torch.save(policy.state_dict(), f"policy_dir/{opts.run_name}.pth")
def run_PPO(opts, logger):
problem = load_problem(opts.problem)
problem_env_class = { 'tsp': TSP_env_optimized, 'op': OP_env_optimized }
actor = AttentionModel(
opts.embedding_dim,
opts.hidden_dim,
problem,
output_probs=False,
n_encode_layers=opts.n_encode_layers,
mask_inner=True,
mask_logits=True,
normalization=opts.normalization,
tanh_clipping=opts.tanh_clipping
).to(opts.device)
lr_actor = opts.lr_actor # 1e-4
lr_critic = opts.lr_critic1 # 1e-4
learning_rate_decay = opts.lr_decay # 0.9999
lr_scheduler_type = opts.lr_scheduler_type
decay_learning_rate = opts.decay_lr # False
num_epochs = opts.n_epochs # 100
num_train_envs = opts.n_train_envs # 32 # has to be smaller or equal to episode_per_collect
episode_per_collect_factor = opts.epc_factor # 1
epoch_size_factor = opts.es_factor # 100
num_test_envs = opts.n_test_envs # 1024 # has to be smaller or equal to num_test_episodes
test_episodes_factor = opts.te_factor # 1
gamma = opts.gamma # 1.00
repeat_per_collect = opts.repeat_per_collect # how many times to learn each batch
critics_embedding_dim = opts.critics_embedding_dim
eps_clip, vf_coef, ent_coef, gae_lambda = opts.eps_clip, opts.vf_coef, opts.ent_coef, opts.gae_lambda
critic_class_str = opts.critic_class_str
critics_class = { 'v1': V_Estimator, 'v3': V_Estimator3 } # critics_class[critic_class_str]
num_of_buffer = num_train_envs # they can't differ, or VectorReplayBuffer will introduce bad data to training
episode_per_collect = num_train_envs * episode_per_collect_factor
if type(opts.graph_size) is list:
# make sure to collect enough. finished envs are reset and continue collecting - see tianshou/data/collector.py at line 366 of version 0.4.11
batch_size = max(opts.graph_size) * episode_per_collect # has to be smaller or equal to buffer_size, defines minibatch size in policy training
else:
batch_size = opts.graph_size * episode_per_collect
buffer_size = batch_size # no buffer_size_factor for onpolicy algorithms as buffer will be cleared after each network update
step_per_epoch = batch_size * epoch_size_factor
num_test_episodes = num_test_envs * test_episodes_factor # just collect this many episodes using policy and checks the performance
step_per_collect = batch_size
critic = critics_class[critic_class_str](embedding_dim=critics_embedding_dim, problem=problem, negate_outputs=opts.negate_critics_output, activation_str=opts.v1critic_activation, invert_visited=opts.v1critic_inv_visited, normalization=opts.normalization).to(opts.device)
# https://discuss.pytorch.org/t/how-to-optimize-multi-models-parameter-in-one-optimizer/3603/6
optimizer = optim.Adam([
{'params': actor.parameters(), 'lr': lr_actor},
{'params': critic.parameters(), 'lr': lr_critic}
])
lr_scheduler_options = {
'exp': ExponentialLR(optimizer, gamma=learning_rate_decay, verbose=False),
'cyclic': CyclicLR(optimizer, opts.cyc_base_lr, opts.cyc_max_lr, step_size_up=opts.cyc_step_size_up, step_size_down=opts.cyc_step_size_down, mode='triangular2', cycle_momentum=False)
}
lr_scheduler = lr_scheduler_options[opts.lr_scheduler_type]
if type(opts.graph_size) is list:
train_problems = []
test_problems = []
for size in opts.graph_size:
train_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(opts.train_envs_per_size)]
test_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(opts.test_envs_per_size)]
else:
train_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(num_train_envs)]
test_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(num_test_envs)]
train_envs = ts.env.DummyVectorEnv(train_problems)
test_envs = ts.env.DummyVectorEnv(test_problems)
distribution_type = Categorical_logits
policy = ts.policy.PPOPolicy(actor=actor,
critic=critic,
optim=optimizer,
dist_fn=distribution_type,
discount_factor=gamma,
lr_scheduler=lr_scheduler if decay_learning_rate else None,
eps_clip=eps_clip,
dual_clip=None,
value_clip=False,
advantage_normalization=False,
vf_coef=vf_coef,
ent_coef=ent_coef,
gae_lambda=gae_lambda,
reward_normalization=False,
deterministic_eval=False,
max_grad_norm=opts.max_grad_norm)
replay_buffer = ts.data.VectorReplayBuffer(total_size=buffer_size, buffer_num=num_of_buffer)
train_collector = ts.data.Collector(policy, train_envs, replay_buffer, exploration_noise=False)
test_collector = ts.data.Collector(policy, test_envs, exploration_noise=False)
def train_fn(epoch, env_step):
update_epoch_counter(epoch)
logger.write("train/learning_rate", epoch, {'LR':lr_scheduler.get_last_lr()[0]})
result = ts.trainer.onpolicy_trainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=num_epochs,
step_per_epoch=step_per_epoch,
repeat_per_collect=repeat_per_collect,
episode_per_test=num_test_episodes,
batch_size=batch_size,
episode_per_collect=episode_per_collect,
logger=logger,
train_fn=train_fn,
save_best_fn=save_policy
)
torch.save(policy.state_dict(), f"policy_dir/{opts.run_name}.pth")
def run_SAC(opts, logger):
problem = load_problem(opts.problem)
problem_env_class = { 'tsp': TSP_env_optimized, 'op': OP_env_optimized } # _optimized
actor = AttentionModel(
opts.embedding_dim,
opts.hidden_dim,
problem,
output_probs=False,
n_encode_layers=opts.n_encode_layers,
mask_inner=True,
mask_logits=True,
normalization=opts.normalization,
tanh_clipping=opts.tanh_clipping
).to(opts.device)
lr_actor = opts.lr_actor # 1e-4
lr_critic1 = opts.lr_critic1 # 1e-5
lr_critic2 = opts.lr_critic2 # 1e-5
learning_rate_decay = opts.lr_decay # 0.99995
lr_scheduler_type = opts.lr_scheduler_type
decay_learning_rate = opts.decay_lr # False
num_epochs = opts.n_epochs # 200
num_train_envs = opts.n_train_envs # 32 # has to be smaller or equal to episode_per_collect
episode_per_collect_factor = opts.epc_factor # 1
buffer_size_factor = opts.bs_factor # 1
epoch_size_factor = opts.es_factor # 100
num_test_envs = opts.n_test_envs # 1024 # has to be smaller or equal to num_test_episodes
test_episodes_factor = opts.te_factor # 1
gamma = opts.gamma # 1.00
critics_embedding_dim = opts.critics_embedding_dim
critic_class_str = opts.critic_class_str
critics_class = { 'v1': V_Estimator, 'v3': V_Estimator3 } # critics_class[critic_class_str]
tau, alpha = opts.tau, opts.alpha_ent # 0.005, None
target_ent = opts.target_ent # default = -np.prod(dummy_env.action_space.shape)
lr_alpha_ent = opts.lr_alpha_ent
num_of_buffer = num_train_envs # they can't differ, or VectorReplayBuffer will introduce bad data to training
episode_per_collect = num_train_envs * episode_per_collect_factor
if type(opts.graph_size) is list:
# make sure to collect enough. finished envs are reset and continue collecting - see tianshou/data/collector.py at line 366 of version 0.4.11
batch_size = max(opts.graph_size) * episode_per_collect # has to be smaller or equal to buffer_size, defines minibatch size in policy training
else:
batch_size = opts.graph_size * episode_per_collect
buffer_size = batch_size * buffer_size_factor
step_per_epoch = batch_size * epoch_size_factor
num_test_episodes = num_test_envs * test_episodes_factor # just collect this many episodes using policy and checks the performance
step_per_collect = batch_size
# https://discuss.pytorch.org/t/how-to-optimize-multi-models-parameter-in-one-optimizer/3603/6
actor_optimizer = optim.Adam([
{'params': actor.parameters(), 'lr': lr_actor}
])
critic1 = critics_class[critic_class_str](embedding_dim=critics_embedding_dim, q_outputs=True, problem=problem, negate_outputs=opts.negate_critics_output, activation_str=opts.v1critic_activation, invert_visited=opts.v1critic_inv_visited, normalization=opts.normalization).to(opts.device) # V_Estimator
critic1_optimizer = optim.Adam([
{'params': critic1.parameters(), 'lr': lr_critic1}
])
critic2 = critics_class[critic_class_str](embedding_dim=critics_embedding_dim, q_outputs=True, problem=problem, negate_outputs=opts.negate_critics_output, activation_str=opts.v1critic_activation, invert_visited=opts.v1critic_inv_visited, normalization=opts.normalization).to(opts.device)
critic2_optimizer = optim.Adam([
{'params': critic2.parameters(), 'lr': lr_critic2}
])
def create_scheduler(optimizer, schedule_type):
if schedule_type == 'exp':
return ExponentialLR(optimizer, gamma=learning_rate_decay, verbose=False)
elif schedule_type == 'cyclic':
return CyclicLR(optimizer, opts.cyc_base_lr, opts.cyc_max_lr, step_size_up=opts.cyc_step_size_up, step_size_down=opts.cyc_step_size_down, mode='triangular2', cycle_momentum=False)
lr_scheduler_actor = create_scheduler(actor_optimizer, opts.lr_scheduler_type)
lr_scheduler_critic1 = create_scheduler(critic1_optimizer, opts.lr_scheduler_type)
lr_scheduler_critic2 = create_scheduler(critic2_optimizer, opts.lr_scheduler_type)
if type(opts.graph_size) is list:
train_problems = []
test_problems = []
for size in opts.graph_size:
train_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(opts.train_envs_per_size)]
test_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(opts.test_envs_per_size)]
else:
train_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(num_train_envs)]
test_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(num_test_envs)]
train_envs = ts.env.DummyVectorEnv(train_problems)
test_envs = ts.env.DummyVectorEnv(test_problems)
if alpha == None:
target_entropy = target_ent
log_alpha = torch.zeros(1, requires_grad=True, device=opts.device)
alpha_optim = torch.optim.Adam([log_alpha], lr=lr_alpha_ent)
alpha = (target_entropy, log_alpha, alpha_optim)
policy = DiscreteSACPolicy_custom(actor=actor,
actor_optim=actor_optimizer,
critic1=critic1,
critic2=critic2,
critic1_optim=critic1_optimizer,
critic2_optim=critic2_optimizer,
tau=tau,
gamma=gamma,
alpha=alpha,
exploration_noise=None,
reward_normalization=False,
deterministic_eval=False)
replay_buffer = ts.data.VectorReplayBuffer(total_size=buffer_size, buffer_num=num_of_buffer)
train_collector = ts.data.Collector(policy, train_envs, replay_buffer, exploration_noise=False)
test_collector = ts.data.Collector(policy, test_envs, exploration_noise=False)
def train_fn(epoch, env_step):
update_epoch_counter(epoch)
updatelog_lr(decay_learning_rate, logger, lr_schedulers=[lr_scheduler_actor, lr_scheduler_critic1, lr_scheduler_critic2], env_step=env_step, log=True, labels=['ActorLR', 'Critic1LR', 'Critic2LR'])
result = ts.trainer.offpolicy_trainer(
policy, train_collector, test_collector, num_epochs, step_per_epoch, step_per_collect,
num_test_episodes, batch_size, update_per_step=1 / step_per_collect,
train_fn=train_fn,
save_best_fn=save_policy,
logger=logger
)
torch.save(policy.state_dict(), f"policy_dir/{opts.run_name}.pth")
def run_A2C(opts, logger):
problem = load_problem(opts.problem)
problem_env_class = { 'tsp': TSP_env_optimized, 'op': OP_env_optimized }
actor = AttentionModel(
opts.embedding_dim,
opts.hidden_dim,
problem,
output_probs=False,
n_encode_layers=opts.n_encode_layers,
mask_inner=True,
mask_logits=True,
normalization=opts.normalization,
tanh_clipping=opts.tanh_clipping
).to(opts.device)
# https://discuss.pytorch.org/t/how-to-optimize-multi-models-parameter-in-one-optimizer/3603/6
lr_actor = opts.lr_actor # 1e-4
lr_critic = opts.lr_critic1 # 5e-5
learning_rate_decay = opts.lr_decay
lr_scheduler_type = opts.lr_scheduler_type
decay_learning_rate = opts.decay_lr # False
num_epochs = opts.n_epochs # 200
num_train_envs = opts.n_train_envs # 32 # has to be smaller or equal to episode_per_collect
episode_per_collect_factor = opts.epc_factor # 1
epoch_size_factor = opts.es_factor # 100
num_test_envs = opts.n_test_envs # 1024 # has to be smaller or equal to num_test_episodes
test_episodes_factor = opts.te_factor # 1
gamma = opts.gamma # 1.00
repeat_per_collect = opts.repeat_per_collect # how many times to learn each batch
critics_embedding_dim = opts.critics_embedding_dim # 64
vf_coef, ent_coef, gae_lambda = opts.vf_coef, opts.ent_coef, opts.gae_lambda
critic_class_str = opts.critic_class_str
critics_class = { 'v1': V_Estimator, 'v3': V_Estimator3 } # critics_class[critic_class_str]
num_of_buffer = num_train_envs # they can't differ, or VectorReplayBuffer will introduce bad data to training
episode_per_collect = num_train_envs * episode_per_collect_factor
if type(opts.graph_size) is list:
# make sure to collect enough. finished envs are reset and continue collecting - see tianshou/data/collector.py at line 366 of version 0.4.11
batch_size = max(opts.graph_size) * episode_per_collect # has to be smaller or equal to buffer_size, defines minibatch size in policy training
else:
batch_size = opts.graph_size * episode_per_collect
buffer_size = batch_size # no buffer_size_factor for onpolicy algorithms as buffer will be cleared after each network update
step_per_epoch = batch_size * epoch_size_factor
num_test_episodes = num_test_envs * test_episodes_factor # just collect this many episodes using policy and checks the performance
step_per_collect = batch_size
critic = critics_class[critic_class_str](embedding_dim=critics_embedding_dim, problem=problem, negate_outputs=opts.negate_critics_output, activation_str=opts.v1critic_activation, invert_visited=opts.v1critic_inv_visited, normalization=opts.normalization).to(opts.device)
# https://discuss.pytorch.org/t/how-to-optimize-multi-models-parameter-in-one-optimizer/3603/6
optimizer = optim.Adam([
{'params': actor.parameters(), 'lr': lr_actor},
{'params': critic.parameters(), 'lr': lr_critic}
])
lr_scheduler_options = {
'exp': ExponentialLR(optimizer, gamma=learning_rate_decay, verbose=False),
'cyclic': CyclicLR(optimizer, opts.cyc_base_lr, opts.cyc_max_lr, step_size_up=opts.cyc_step_size_up, step_size_down=opts.cyc_step_size_down, mode='triangular2', cycle_momentum=False)
}
lr_scheduler = lr_scheduler_options[opts.lr_scheduler_type]
# SubprocVectorEnv DummyVectorEnv
if type(opts.graph_size) is list:
train_problems = []
test_problems = []
for size in opts.graph_size:
train_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(opts.train_envs_per_size)]
test_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(opts.test_envs_per_size)]
else:
train_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(num_train_envs)]
test_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(num_test_envs)]
train_envs = ts.env.DummyVectorEnv(train_problems)
test_envs = ts.env.DummyVectorEnv(test_problems)
distribution_type = Categorical_logits
policy = ts.policy.A2CPolicy(actor=actor,
critic=critic,
optim=optimizer,
dist_fn=distribution_type,
discount_factor=gamma,
lr_scheduler=lr_scheduler if decay_learning_rate else None,
vf_coef=vf_coef,
ent_coef=ent_coef,
gae_lambda=gae_lambda,
max_grad_norm=opts.max_grad_norm)
replay_buffer = ts.data.VectorReplayBuffer(total_size=buffer_size, buffer_num=num_of_buffer)
train_collector = ts.data.Collector(policy, train_envs, replay_buffer, exploration_noise=False)
test_collector = ts.data.Collector(policy, test_envs, exploration_noise=False)
def train_fn(epoch, env_step):
update_epoch_counter(epoch)
logger.write("train/learning_rate", epoch, {'LR':lr_scheduler.get_last_lr()[0]})
result = ts.trainer.onpolicy_trainer(
policy=policy,
train_collector=train_collector,
test_collector=test_collector,
max_epoch=num_epochs,
step_per_epoch=step_per_epoch,
repeat_per_collect=repeat_per_collect,
episode_per_test=num_test_episodes,
batch_size=batch_size,
episode_per_collect=episode_per_collect,
train_fn=train_fn,
save_best_fn=save_policy,
logger=logger
)
torch.save(policy.state_dict(), f"policy_dir/{opts.run_name}.pth")
def run_custom_REINFORCE(opts, log_results=False):
problem = load_problem(opts.problem)
problem_env_class = { 'tsp': TSP_env_optimized, 'op': OP_env_optimized }
critic_class_str = opts.critic_class_str
critics_class = { 'v1': V_Estimator, 'v3': V_Estimator3 }
# NOTE: dims must be equivalent to save
actor = AttentionModel(
opts.embedding_dim,
opts.hidden_dim,
problem,
output_probs=False,
n_encode_layers=opts.n_encode_layers,
mask_inner=True,
mask_logits=True,
normalization=opts.normalization,
tanh_clipping=opts.tanh_clipping
).to(opts.device)
critic = critics_class[critic_class_str](embedding_dim=opts.critics_embedding_dim, problem=problem, negate_outputs=opts.negate_critics_output, activation_str=opts.v1critic_activation, invert_visited=opts.v1critic_inv_visited).to(opts.device)
# https://discuss.pytorch.org/t/how-to-optimize-multi-models-parameter-in-one-optimizer/3603/6
learning_rate = 1e-4
optimizer = optim.Adam([
{'params': actor.parameters(), 'lr': learning_rate}
])
num_test_envs = 512 # has to be smaller or equal to num_test_episodes
num_train_envs = batch_size = 16
num_episodes = opts.n_epochs
num_batches_per_episode = 20
# DummyVectorEnv, SubprocVectorEnv
if type(opts.graph_size) is list:
train_problems = []
test_problems = []
for size in opts.graph_size:
train_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(opts.train_envs_per_size)]
test_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(opts.test_envs_per_size)]
else:
train_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(num_train_envs)]
test_problems += [lambda: problem_env_class[opts.problem](opts, size) for _ in range(num_test_envs)]
train_envs = ts.env.DummyVectorEnv(train_problems)
test_envs = ts.env.DummyVectorEnv(test_problems)
for i in range(num_episodes):
for j in range(num_batches_per_episode):
episode_rewards = np.zeros(num_train_envs)
eposide_log_probs = torch.zeros(num_train_envs, device=opts.device)
data = ts.data.Batch(obs={}, act={}, rew={}, done={}, obs_next={}, info={}, policy={})
data.obs = train_envs.reset()
done = False
embeddings = actor.encode(data.obs)
while not done:
logits, _ = actor.decode(data.obs, embeddings)
if log_results:
dist = Categorical_logits(logits)
act = dist.sample()
eposide_log_probs += dist.log_prob(act)
data.obs, data.rew, data.done, info = train_envs.step(act)
episode_rewards += data.rew
done=data.done[0]
episode_costs = -to_torch_as(episode_rewards, eposide_log_probs)
loss = torch.sum(eposide_log_probs * episode_costs)
print(f"Episode: {i}, b{j}: loss={loss.item()}, rew={np.mean(episode_rewards)}")
optimizer.zero_grad()
loss.backward()
optimizer.step()
def batchify_obs(obs):
obs['loc'] = torch.unsqueeze(obs['loc'], dim=0)
obs['dist'] = torch.unsqueeze(obs['dist'], dim=0)
obs['first_a'] = torch.unsqueeze(obs['first_a'], dim=0)
obs['prev_a'] = torch.unsqueeze(obs['prev_a'], dim=0)
obs['visited'] = torch.unsqueeze(obs['visited'], dim=0)
obs['length'] = torch.unsqueeze(obs['length'], dim=0)
return obs
def run_STE_argmax(opts):
problem = load_problem(opts.problem)
model = AttentionModel(
opts.embedding_dim,
opts.hidden_dim,
problem,
output_probs=False,
n_encode_layers=opts.n_encode_layers,
mask_inner=True,
mask_logits=True,
normalization=opts.normalization,
tanh_clipping=opts.tanh_clipping
).to(opts.device)
optimizer = optim.Adam([
{'params': model.parameters(), 'lr': opts.lr_actor},
])
env = TSP_env(opts)
obs = env.reset()
done = False
for epoch_idx in range(10):
epoch_costs = 0
for _ in range(opts.epoch_size):
costs = []
for _ in range(opts.batch_size):
total_cost = 0
obs = batchify_obs(obs)
node_embeddings = model.encode(obs)
while not done:
logits, _ = model.decode(obs, node_embeddings)
# create class to make a differentiable argmax operation with embedding selection - done
# adjust env to save those embeddings with grads of the whole trajectory - done
# adjust observation to include the right embeddings - done
# adjust network to use these embeddings for context creation - done
# maybe adjust network to run encoder only once - done
# split model into encoder and decoder for easier use here - done
# done?
action, action_embedding = ArgMaxEmbed.apply(logits, node_embeddings.squeeze()) # NOTE: because of the squeeze here this doesnt work for batches!
obs, reward, done, info = env.step(action, action_embedding)
obs = batchify_obs(obs)
total_cost += reward
obs, done = env.reset(), False
costs.append(total_cost)
# calculate total cost
costs = torch.tensor(costs, device=opts.device)
loss = -costs.mean()
epoch_costs += costs.mean()
optimizer.zero_grad()
loss.backward()
optimizer.step()
print(costs.mean())
#print(loss)
print(f'Epoch {epoch_idx} Costs: {epoch_costs/opts.epoch_size}') # not working rn
def manual_testing(opts):
problem_env_class = { 'tsp': TSP_env_optimized, 'op': OP_env_optimized }
env = problem_env_class[opts.problem](opts)
obs = env.reset()
done = False
print(f"{obs=}")
while not done:
obs, reward, done, info = env.step(int(input()))
print(f"{obs=}, {reward=}, {done=}")
def run_saved(opts, log_solutions=False, logger=None, deterministic_eval=True):
t0 = time.time()
problem = load_problem(opts.problem)
problem_env_class = { 'tsp': TSP_env_optimized, 'op': OP_env_optimized }
critic_class_str = opts.critic_class_str
critics_class = { 'v1': V_Estimator, 'v3': V_Estimator3 }
# ARCHITECTURE AND PLACEHOLDER ///////////////////////////////////////////////////////////////////////////////////////////////////
actor = AttentionModel(
opts.embedding_dim,
opts.hidden_dim,
problem,
output_probs=False,
n_encode_layers=opts.n_encode_layers,
mask_inner=True,
mask_logits=True,
normalization=opts.normalization,
tanh_clipping=opts.tanh_clipping
).to(opts.device)
critic1 = critics_class[critic_class_str](embedding_dim=opts.critics_embedding_dim, problem=problem, negate_outputs=opts.negate_critics_output, activation_str=opts.v1critic_activation, invert_visited=opts.v1critic_inv_visited).to(opts.device)
critic2 = critics_class[critic_class_str](embedding_dim=opts.critics_embedding_dim, problem=problem, negate_outputs=opts.negate_critics_output, activation_str=opts.v1critic_activation, invert_visited=opts.v1critic_inv_visited).to(opts.device)
# PLACEHOLDERS
learning_rate = 1e-3
optimizer = optim.Adam([
{'params': actor.parameters(), 'lr': learning_rate}
])
critic1_optimizer = optim.Adam([
{'params': critic1.parameters(), 'lr': learning_rate}
])
critic2_optimizer = optim.Adam([
{'params': critic2.parameters(), 'lr': learning_rate}
])
gamma, alpha = 1.00, 0.01
num_eval_envs = 10
num_runs = 100
eval_envs = ts.env.DummyVectorEnv([lambda: problem_env_class[opts.problem](opts, opts.graph_size) for _ in range(num_eval_envs)])
# POLICIES /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
distribution_type = Categorical_logits
if opts.rl_algorithm == 'DQN':
policy = ts.policy.DQNPolicy(actor, optimizer, gamma, opts.n_step, target_update_freq=opts.target_freq)
elif opts.rl_algorithm == 'PG':
Policy_class = PGPolicy_custom if opts.neg_PG else ts.policy.PGPolicy
policy = Policy_class(model=actor,
optim=optimizer,
dist_fn=distribution_type,
discount_factor=gamma)
elif opts.rl_algorithm == 'PPO':
policy = ts.policy.PPOPolicy(actor=actor,
critic=critic1,
optim=optimizer, # NOTE: optimizer originally contains actor and critic params for PPO implementation! but here it is just used as placeholder
dist_fn=distribution_type,
discount_factor=gamma)
elif opts.rl_algorithm == 'A2C':
policy = ts.policy.A2CPolicy(actor=actor,
critic=critic1,
optim=optimizer,
dist_fn=distribution_type,
discount_factor=gamma)
elif opts.rl_algorithm == 'SAC':
policy = DiscreteSACPolicy_custom(actor=actor,
actor_optim=optimizer,
critic1=critic1,
critic2=critic2,
critic1_optim=critic1_optimizer,
critic2_optim=critic2_optimizer)
else:
print('RL Algorithm specified is not compatible with evaluation mode.')
return
policy.load_state_dict(torch.load(opts.saved_policy_path)) # f"policy_dir/{opts.save_name}.pth"
# EVALUATION /////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
all_rewards = []
logs = {}
logs['runs'] = []
for i in range(num_runs):
total_rew = np.zeros(num_eval_envs)
data = ts.data.Batch(obs={}, act={}, rew={}, done={}, obs_next={}, info={}, policy={})
data.obs = eval_envs.reset()
not_done_mask = np.ones(num_eval_envs, dtype=bool)
done = False
if log_solutions:
log = {}
log['coordinates'] = data.obs['loc'].tolist()
log['tour_probs'] = []
log['tour_indices'] = []
embeddings = policy.actor.encode(data.obs) if opts.rl_algorithm != 'DQN' else policy.model.encode(data.obs)
while not done:
logits, _ = policy.actor.decode(data.obs, embeddings[not_done_mask]) if opts.rl_algorithm != 'DQN' else policy.model.decode(data.obs, embeddings[not_done_mask])
dist = Categorical_logits(logits)
if deterministic_eval:
act = logits.max(dim=1)[1] # [1] for getting the indices
else:
act = dist.sample()
if log_solutions:
log['tour_probs'].append(dist.probs.tolist())
log['tour_indices'].append(act.tolist())
data.obs, data.rew, data.done, info = eval_envs.step(act, id=np.flatnonzero(not_done_mask))
total_rew[not_done_mask] += data.rew
done=np.all(data.done)
not_done_mask[not_done_mask] = np.logical_not(data.done) # updating all values that were not done before
data = data[np.logical_not(data.done)]
all_rewards.append(total_rew)
if log_solutions:
logs['runs'].append(log)
t1 = time.time()
total_time = t1-t0
if log_solutions:
with open(f"eval_logs/{opts.run_name}" + ".json", "w") as fp:
json.dump(logs, fp)
all_rewards = np.stack(all_rewards)
if logger is not None:
logger.write("eval/rew", opts.graph_size, {'rew': np.mean(all_rewards)})
logger.write("eval/std", opts.graph_size, {'std': np.std(all_rewards)})
logger.write("eval/avg_time", opts.graph_size, {'avg_time': total_time/(num_eval_envs*num_runs)})
print(f"Size: {opts.graph_size}, Mean: {np.mean(all_rewards)}, Std: {np.std(all_rewards)}, Avg Time: {total_time/(num_eval_envs*num_runs)}")
def random_run(opts, logger=None):
problem = load_problem(opts.problem)
problem_env_class = { 'tsp': TSP_env_optimized, 'op': OP_env_optimized } # _optimized
policy = RandomPolicy()
num_train_envs = 10
n_episodes = num_train_envs *100
envs = ts.env.DummyVectorEnv([lambda: problem_env_class[opts.problem](opts) for _ in range(num_train_envs)])
collector = ts.data.Collector(policy, envs, exploration_noise=False)
result = collector.collect(n_episode=n_episodes)
if logger is not None:
logger.write("rew", opts.graph_size, {'rew': result['rew']})
logger.write("std", opts.graph_size, {'std': result['rew_std']})
print(f"Size: {opts.graph_size}, Mean: {result['rew']}, Std: {result['rew_std']}")
def evaluate(opts):
writer = SummaryWriter(f"log_dir/{opts.run_name}")
writer.add_text("args", str(opts))
logger = TensorboardLogger(writer, train_interval=1000, test_interval=1, update_interval=1)
graph_sizes = [5, 10, 20, 30, 40, 50, 100] # [20, 30, 40, 50, 100]
for graph_size in graph_sizes:
opts.graph_size = graph_size
#random_run(opts, logger)
run_saved(opts, logger=logger)
return