-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRVChat.py
88 lines (70 loc) · 3.16 KB
/
RVChat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import os
import asyncio
import chainlit as cl
import warnings
from langchain_community.vectorstores.chroma import Chroma
from langchain_community.document_loaders import PyPDFLoader, DirectoryLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import OllamaEmbeddings
from langchain.chains.conversational_retrieval.base import ConversationalRetrievalChain
from langchain_community.chat_models.ollama import ChatOllama
from langchain.memory import ChatMessageHistory, ConversationBufferMemory
llmmodel = os.getenv("LLM_MODEL", "llama3")
text_splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=200)
async def process_documents(directory):
pdfDirecLoader = DirectoryLoader(directory, glob="*.pdf", loader_cls=PyPDFLoader)
loadedDocuments = pdfDirecLoader.load()
chunkedDocuments = text_splitter.split_documents(loadedDocuments)
content = [doc.page_content for doc in chunkedDocuments]
metadatas = [doc.metadata for doc in chunkedDocuments]
return content, metadatas
@cl.on_chat_start
async def on_chat_start():
warnings.simplefilter(action='ignore')
fast_embeddings = OllamaEmbeddings(model="nomic-embed-text")
vectorDB = Chroma(persist_directory="./data", embedding_function=fast_embeddings)
msg = cl.Message(content="Processing Started ...")
await msg.send()
if not os.path.exists("./files"):
os.makedirs("./files")
if not os.path.exists("./data"):
os.makedirs("./data")
content, metadatas = await process_documents("./files/")
vectorDB = Chroma.from_texts(texts=content, embedding=fast_embeddings, metadatas=metadatas, persist_directory="./data")
vectorDB.persist()
vectorDB = Chroma(persist_directory="./data", embedding_function=fast_embeddings)
messageHistory = ChatMessageHistory()
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key="answer",
chat_memory=messageHistory,
return_messages=True
)
chain = ConversationalRetrievalChain.from_llm(
ChatOllama(model=llmmodel, temperature=0.3),
chain_type="stuff",
retriever=vectorDB.as_retriever(),
memory=memory,
return_source_documents=True,
)
msg.content = "Processing Complete..."
await msg.update()
cl.user_session.set("chain", chain)
@cl.on_message
async def main(message: cl.Message):
chain = cl.user_session.get("chain")
cb = cl.AsyncLangchainCallbackHandler()
res = await chain.acall(message.content, callbacks=[cb])
answer = res["answer"]
source_documents = res["source_documents"]
text_elements = []
if source_documents:
for source_idx, source_doc in enumerate(source_documents):
source_name = f"source_{source_idx}"
text_elements.append(cl.Text(content=source_doc.page_content, name=source_name))
source_names = [text_el.name for text_el in text_elements]
if source_names:
answer += f"\nSources: {', '.join(source_names)}"
else:
answer += "\nNo sources found"
await cl.Message(content=answer, elements=text_elements).send()