-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathModels.toml
36 lines (36 loc) · 5.51 KB
/
Models.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
BetaML = ["RandomForestRegressor", "GaussianMixtureImputer", "RandomForestClassifier", "RandomForestImputer", "PerceptronClassifier", "AutoEncoder", "DecisionTreeRegressor", "PegasosClassifier", "KMeansClusterer", "NeuralNetworkRegressor", "MultitargetGaussianMixtureRegressor", "GaussianMixtureRegressor", "MultitargetNeuralNetworkRegressor", "DecisionTreeClassifier", "GeneralImputer", "NeuralNetworkClassifier", "SimpleImputer", "GaussianMixtureClusterer", "KernelPerceptronClassifier", "KMedoidsClusterer"]
CatBoost = ["CatBoostRegressor", "CatBoostClassifier"]
NearestNeighborModels = ["KNNClassifier", "MultitargetKNNClassifier", "MultitargetKNNRegressor", "KNNRegressor"]
MLJScikitLearnInterface = ["ProbabilisticSGDClassifier", "RidgeCVClassifier", "LogisticClassifier", "RandomForestRegressor", "ElasticNetCVRegressor", "PerceptronClassifier", "MultiTaskLassoRegressor", "LinearRegressor", "HDBSCAN", "DBSCAN", "RidgeRegressor", "LassoLarsICRegressor", "ARDRegressor", "SVMNuRegressor", "RidgeClassifier", "SGDRegressor", "ComplementNBClassifier", "HuberRegressor", "SVMNuClassifier", "GradientBoostingClassifier", "GaussianProcessRegressor", "SVMLinearRegressor", "LarsRegressor", "MeanShift", "HistGradientBoostingClassifier", "AdaBoostRegressor", "AffinityPropagation", "MultiTaskLassoCVRegressor", "OrthogonalMatchingPursuitRegressor", "BernoulliNBClassifier", "PassiveAggressiveClassifier", "RidgeCVRegressor", "SVMRegressor", "GaussianNBClassifier", "ExtraTreesClassifier", "KMeans", "MultiTaskElasticNetCVRegressor", "LassoLarsCVRegressor", "OrthogonalMatchingPursuitCVRegressor", "AdaBoostClassifier", "PassiveAggressiveRegressor", "BayesianRidgeRegressor", "GaussianProcessClassifier", "BaggingClassifier", "OPTICS", "RANSACRegressor", "KNeighborsRegressor", "HistGradientBoostingRegressor", "MiniBatchKMeans", "LassoCVRegressor", "DummyRegressor", "BisectingKMeans", "LassoLarsRegressor", "LarsCVRegressor", "KNeighborsClassifier", "SVMLinearClassifier", "FeatureAgglomeration", "DummyClassifier", "BaggingRegressor", "BayesianQDA", "BayesianLDA", "SGDClassifier", "TheilSenRegressor", "SpectralClustering", "Birch", "AgglomerativeClustering", "ElasticNetRegressor", "RandomForestClassifier", "LogisticCVClassifier", "MultiTaskElasticNetRegressor", "ExtraTreesRegressor", "LassoRegressor", "MultinomialNBClassifier", "GradientBoostingRegressor", "SVMClassifier"]
OutlierDetectionNeighbors = ["ABODDetector", "DNNDetector", "LOFDetector", "KNNDetector", "COFDetector"]
SIRUS = ["StableRulesClassifier", "StableForestClassifier", "StableRulesRegressor", "StableForestRegressor"]
MLJIteration = ["IteratedModel"]
PartialLeastSquaresRegressor = ["KPLSRegressor", "PLSRegressor"]
PartitionedLS = ["PartLS"]
MLJLinearModels = ["QuantileRegressor", "LogisticClassifier", "MultinomialClassifier", "LADRegressor", "RidgeRegressor", "RobustRegressor", "ElasticNetRegressor", "LinearRegressor", "LassoRegressor", "HuberRegressor"]
ParallelKMeans = ["KMeans"]
NaiveBayes = ["GaussianNBClassifier", "MultinomialNBClassifier"]
MLJBase = ["Pipeline", "Resampler", "Stack", "TransformedTargetModel"]
MultivariateStats = ["LDA", "MultitargetLinearRegressor", "BayesianSubspaceLDA", "FactorAnalysis", "LinearRegressor", "ICA", "PPCA", "RidgeRegressor", "KernelPCA", "MultitargetRidgeRegressor", "SubspaceLDA", "BayesianLDA", "PCA"]
DecisionTree = ["AdaBoostStumpClassifier", "DecisionTreeRegressor", "DecisionTreeClassifier", "RandomForestRegressor", "RandomForestClassifier"]
MLJBalancing = ["BalancedBaggingClassifier", "BalancedModel"]
Imbalance = ["RandomOversampler", "SMOTENC", "TomekUndersampler", "ClusterUndersampler", "SMOTE", "SMOTEN", "ROSE", "RandomUndersampler", "ENNUndersampler", "BorderlineSMOTE1", "RandomWalkOversampler"]
MLJTuning = ["TunedModel"]
FeatureSelection = ["FeatureSelector", "RecursiveFeatureElimination"]
Clustering = ["HierarchicalClustering", "DBSCAN", "KMeans", "AffinityPropagation", "KMedoids"]
EvoLinear = ["EvoSplineRegressor", "EvoLinearRegressor"]
MLJText = ["TfidfTransformer", "CountTransformer", "BM25Transformer"]
LightGBM = ["LGBMClassifier", "LGBMRegressor"]
LaplaceRedux = ["LaplaceClassifier", "LaplaceRegressor"]
XGBoost = ["XGBoostCount", "XGBoostRegressor", "XGBoostClassifier"]
EvoTrees = ["EvoTreeClassifier", "EvoTreeGaussian", "EvoTreeMLE", "EvoTreeRegressor", "EvoTreeCount"]
SymbolicRegression = ["MultitargetSRRegressor", "SRRegressor"]
MLJModels = ["ConstantClassifier", "Standardizer", "DeterministicConstantClassifier", "UnivariateTimeTypeToContinuous", "OneHotEncoder", "ContinuousEncoder", "UnivariateBoxCoxTransformer", "InteractionTransformer", "ConstantRegressor", "UnivariateDiscretizer", "BinaryThresholdPredictor", "FillImputer", "DeterministicConstantRegressor", "UnivariateStandardizer", "UnivariateFillImputer"]
OneRule = ["OneRuleClassifier"]
OutlierDetectionPython = ["MCDDetector", "COPODDetector", "HBOSDetector", "IForestDetector", "SOSDetector", "ABODDetector", "LOFDetector", "PCADetector", "INNEDetector", "OCSVMDetector", "ECODDetector", "SODDetector", "LODADetector", "KDEDetector", "CDDetector", "KNNDetector", "GMMDetector", "COFDetector", "CBLOFDetector", "LOCIDetector", "LMDDDetector", "RODDetector"]
SelfOrganizingMaps = ["SelfOrganizingMap"]
LIBSVM = ["SVC", "EpsilonSVR", "LinearSVC", "ProbabilisticSVC", "NuSVR", "NuSVC", "ProbabilisticNuSVC", "OneClassSVM"]
TSVD = ["TSVDTransformer"]
GLM = ["LinearBinaryClassifier", "LinearCountRegressor", "LinearRegressor"]
MLJFlux = ["MultitargetNeuralNetworkRegressor", "NeuralNetworkClassifier", "ImageClassifier", "NeuralNetworkBinaryClassifier", "NeuralNetworkRegressor"]
MLJEnsembles = ["EnsembleModel"]