forked from kakao-arena/shopping-classification
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathclassifier.py
163 lines (136 loc) · 6.15 KB
/
classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
# -*- coding: utf-8 -*-
# Copyright 2017 Kakao, Recommendation Team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import json
import cPickle
from itertools import izip
import fire
import h5py
import numpy as np
from keras.models import load_model
from keras.callbacks import ModelCheckpoint
from misc import get_logger, Option
from network import TextOnly, top1_acc
opt = Option('./config.json')
cate1 = json.loads(open('../cate1.json').read())
DEV_DATA_LIST = ['../dev.chunk.01']
class Classifier():
def __init__(self):
self.logger = get_logger('Classifier')
self.num_classes = 0
def get_sample_generator(self, ds, batch_size):
left, limit = 0, ds['uni'].shape[0]
while True:
right = min(left + batch_size, limit)
X = [ds[t][left:right, :] for t in ['uni', 'w_uni']]
Y = ds['cate'][left:right]
yield X, Y
left = right
if right == limit:
left = 0
def get_inverted_cate1(self, cate1):
inv_cate1 = {}
for d in ['b', 'm', 's', 'd']:
inv_cate1[d] = {v: k for k, v in cate1[d].iteritems()}
return inv_cate1
def write_prediction_result(self, data, pred_y, meta, out_path, readable):
pid_order = []
for data_path in DEV_DATA_LIST:
h = h5py.File(data_path, 'r')['dev']
pid_order.extend(h['pid'][::])
y2l = {i: s for s, i in meta['y_vocab'].iteritems()}
y2l = map(lambda x: x[1], sorted(y2l.items(), key=lambda x: x[0]))
inv_cate1 = self.get_inverted_cate1(cate1)
rets = {}
for pid, p in izip(data['pid'], pred_y):
y = np.argmax(p)
label = y2l[y]
tkns = map(int, label.split('>'))
b, m, s, d = tkns
assert b in inv_cate1['b']
assert m in inv_cate1['m']
assert s in inv_cate1['s']
assert d in inv_cate1['d']
tpl = '{pid}\t{b}\t{m}\t{s}\t{d}'
if readable:
b = inv_cate1['b'][b]
m = inv_cate1['m'][m]
s = inv_cate1['s'][s]
d = inv_cate1['d'][d]
rets[pid] = tpl.format(pid=pid, b=b, m=m, s=s, d=d)
no_answer = '{pid}\t-1\t-1\t-1\t-1'
with open(out_path, 'w') as fout:
for pid in pid_order:
ans = rets.get(pid, no_answer.format(pid=pid))
print >> fout, ans
def predict(self, data_root, model_root, test_root, test_div, out_path, readable=False):
meta_path = os.path.join(data_root, 'meta')
meta = cPickle.loads(open(meta_path).read())
model_fname = os.path.join(model_root, 'model.h5')
self.logger.info('# of classes(train): %s' % len(meta['y_vocab']))
model = load_model(model_fname,
custom_objects={'top1_acc': top1_acc})
test_path = os.path.join(test_root, 'data.h5py')
test_data = h5py.File(test_path, 'r')
test = test_data[test_div]
test_gen = self.get_sample_generator(test, opt.batch_size)
total_test_samples = test['uni'].shape[0]
steps = int(np.ceil(total_test_samples / float(opt.batch_size)))
pred_y = model.predict_generator(test_gen,
steps=steps,
workers=opt.num_predict_workers,
verbose=1)
self.write_prediction_result(test, pred_y, meta, out_path, readable=readable)
def train(self, data_root, out_dir):
data_path = os.path.join(data_root, 'data.h5py')
meta_path = os.path.join(data_root, 'meta')
data = h5py.File(data_path, 'r')
meta = cPickle.loads(open(meta_path).read())
self.weight_fname = os.path.join(out_dir, 'weights')
self.model_fname = os.path.join(out_dir, 'model')
if not os.path.isdir(out_dir):
os.makedirs(out_dir)
self.logger.info('# of classes: %s' % len(meta['y_vocab']))
self.num_classes = len(meta['y_vocab'])
train = data['train']
dev = data['dev']
self.logger.info('# of train samples: %s' % train['cate'].shape[0])
self.logger.info('# of dev samples: %s' % dev['cate'].shape[0])
checkpoint = ModelCheckpoint(self.weight_fname, monitor='val_loss',
save_best_only=True, mode='min', period=10)
fasttext = TextOnly()
model = fasttext.get_model(self.num_classes)
total_train_samples = train['uni'].shape[0]
train_gen = self.get_sample_generator(train,
batch_size=opt.batch_size)
self.steps_per_epoch = int(np.ceil(total_train_samples / float(opt.batch_size)))
total_dev_samples = dev['uni'].shape[0]
dev_gen = self.get_sample_generator(dev,
batch_size=opt.batch_size)
self.validation_steps = int(np.ceil(total_dev_samples / float(opt.batch_size)))
model.fit_generator(generator=train_gen,
steps_per_epoch=self.steps_per_epoch,
epochs=opt.num_epochs,
validation_data=dev_gen,
validation_steps=self.validation_steps,
shuffle=True,
callbacks=[checkpoint])
model.load_weights(self.weight_fname) # loads from checkout point if exists
open(self.model_fname + '.json', 'w').write(model.to_json())
model.save(self.model_fname + '.h5')
if __name__ == '__main__':
clsf = Classifier()
fire.Fire({'train': clsf.train,
'predict': clsf.predict})