-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodels.py
83 lines (74 loc) · 3.13 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Activation, \
Flatten, Input, Convolution2D, MaxPooling2D, \
AveragePooling2D, Convolution1D, GRU, Lambda, \
MaxPooling1D, Merge, Reshape, BatchNormalization
from GADF_tensorflow import GAFLayer
def conv_model(img_rows=200, img_cols=4, channels=1, nb_classes=13):
"""
Convolutional Model
Default parameters represent parameters for running on raw time series
data, imaged only in the sense that it is reshaped to a
Nximg_rowsximg_colsxchannels tensor
"""
nb_filters = 32
nb_pool = 2
kernel_size = (2, 2)
model = Sequential()
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1],
border_mode='valid',
input_shape=(img_rows, img_cols, channels)))
model.add(Activation('tanh'))
model.add(Convolution2D(nb_filters, kernel_size[0], kernel_size[1]))
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(nb_pool, nb_pool)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, name='features'))
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes, activation='softmax'))
return model
def conv_preprocessed(img_rows=64, img_cols=64, channels=4, nb_classes=13):
"""
Convenience function for setting parameters for convolutional model run on
time series data imaged with GADF or GASF or MTF.
"""
return conv_model(img_rows=img_rows, img_cols=img_cols, channels=channels,
nb_classes=nb_classes)
def mnist_GADF(img_rows=200, img_cols=4, channels=1, nb_classes=13, GAF_type='GADF', paa_size=64):
"""
Convolutional model using tensorflow to compute GASDF
Not recommended because its much slower than running
GASDF once on all images, and then putting these into
conv_preprocessed model.
"""
model = Sequential()
model.add(GAFLayer(input_shape=(img_rows, img_cols, channels)))
model.add(conv_preprocessed(nb_classes=nb_classes))
return model
def FCNN(img_rows=200, img_cols=4, channels=1, nb_classes=13):
"""
Fully Connected Model
Runs on input tensor of shape Nximg_rowsximg_colsxchannals
"""
x = Input(shape=(img_rows, img_cols, channels))
flat = Flatten()(x)
dense1 = Dense(512, activation='tanh')(flat)
dense2 = Dense(256, activation='tanh')(dense1)
dense3 = Dense(128, activation='tanh')(dense2)
dropout = Dropout(0.5)(dense3)
output = Dense(nb_classes, activation='softmax')(dropout)
return Model(x, output)
def recurrent(nb_classes=13, img_rows=200, img_cols=4, channels=1):
"""
Recurrent Model
Runs on input tensor of shape Nximg_rowsximg_colsxchannels
"""
x = Input(shape=(img_rows, img_cols, channels))
reshaped = Reshape((img_rows, img_cols * channels))(x)
gru1 = GRU(1024, return_sequences=True, activation='tanh')(reshaped)
gru2 = GRU(256, return_sequences=True, activation='tanh')(gru1)
gru3 = GRU(64, activation='tanh')(gru2)
dense = Dense(nb_classes, activation='softmax')(gru3)
return Model(x, dense)