-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathSentinelSemanticSegmentation.py
198 lines (161 loc) · 8.88 KB
/
SentinelSemanticSegmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
#!/usr/bin/env python
"""
This file is used to run the project. Set all to true to run full pipeline.
Notes:
- The structure of this file (and the entire project in general) is made with emphasis on flexibility for research
purposes, and the pipelining is done in a python file such that newcomers can easily use and understand the code.
- Remember that relative paths in Python are always relative to the current working directory.
Hence, if you look at the functions in make_dataset.py, the file paths are relative to the path of
this file (SentinelSemanticSegmentation.py)
"""
__author__ = "Jacob Høxbroe Jeppesen"
__email__ = "jhj@eng.au.dk"
import time
import argparse
import datetime
import os
import random
import numpy as np
import tensorflow as tf
from src.data.make_dataset import make_numpy_dataset
from src.models.params import get_params
from src.models.Unet import Unet
from src.models.evaluate_model import evaluate_test_set, write_csv_files
# Don't allow tensorflow to reserve all memory available
#from keras.backend.tensorflow_backend import set_session
#config = tf.ConfigProto()
#config.gpu_options.allow_growth = True # dynamically grow the memory used on the GPU
#config.log_device_placement = True # to log device placement (on which device the operation ran)
# (nothing gets printed in Jupyter, only if you run it standalone)
#sess = tf.Session(config=config) # set this TensorFlow session as the default session for Keras
#set_session(sess)
# ----------------------------------------------------------------------------------------------------------------------
# Define default pipeline
# ----------------------------------------------------------------------------------------------------------------------
# Create the parser. The formatter_class argument makes sure that default values are shown when --help is called.
parser = argparse.ArgumentParser(description='Pipeline for running the project',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Define which steps should be run automatically when this file is run. When using action='store_true', the argument
# has to be provided to run the step. When using action='store_false', the step will be run when this file is executed.
parser.add_argument('--make_dataset',
action='store_true',
help='Run the pre-processing step')
parser.add_argument('--train',
action='store_true',
help='Run the training step')
parser.add_argument('--hparam_optimization',
action='store_true',
help='Do hyperparameter optimization')
parser.add_argument('--test',
action='store_true',
help='Run test step')
# ----------------------------------------------------------------------------------------------------------------------
# Define the arguments used in the entire pipeline
# ----------------------------------------------------------------------------------------------------------------------
parser.add_argument('--satellite',
type=str,
default='Landsat8',
help='The satellite used (Sentinel-2 or Landsat8)')
parser.add_argument('--initial_model',
type=str,
default='sen2cor',
help='Which initial is model is wanted for training (sen2cor or fmask)')
# ----------------------------------------------------------------------------------------------------------------------
# Define the arguments for the training
# ----------------------------------------------------------------------------------------------------------------------
parser.add_argument('--model',
type=str,
default='U-net',
help='Comma separated list of "name=value" pairs.')
parser.add_argument('--params',
type=str,
help='Comma separated list of "name=value" pairs.')
parser.add_argument('--dev_dataset',
action='store_true',
help='Very small dataset to be used while developing the project')
# ----------------------------------------------------------------------------------------------------------------------
# Define the arguments for the visualization
# ----------------------------------------------------------------------------------------------------------------------
parser.add_argument('--dataset',
type=str,
default='Biome',
help='Dataset for evaluating Landsat 8 data')
if __name__ == '__main__':
# Load the arguments
args = parser.parse_args()
# Store current time to calculate execution time later
start_time = time.time()
print("\n---------------------------------------")
print("Script started")
print("---------------------------------------\n")
# Load hyperparameters into the params object containing name-value pairs
params = get_params(args.model, args.satellite)
# If any hyperparameters were overwritten in the commandline, parse them into params
if args.params:
params.parse(args.params)
# If you want to use local files (else it uses network drive)
if args.dev_dataset:
params.data_path = "/home/jhj/phd/GitProjects/SentinelSemanticSegmentation/data/processed/dev_dataset/"
# Check to see if a new data set should be processed from the raw data
if args.make_dataset:
print("Processing numpy data set")
make_numpy_dataset(params)
# Check to see if a model should be trained
if args.train:
print("Training " + args.model + " model")
if not params.split_dataset: # No k-fold cross-validation
# Load the model
params.modelID = datetime.datetime.now().strftime("%y%m%d%H%M%S")
if args.model == 'U-net':
model = Unet(params)
model.train(params)
# Run model on test data set
evaluate_test_set(model, params.test_dataset, params.num_gpus, params)
else: # With k-fold cross-validation
# Define number of k-folds
if 'Biome' in params.train_dataset:
k_folds = 2 # Biome dataset is made for 2-fold CV
else:
k_folds = 5 # SPARCS contains 80 scenes, so split it nicely
# Create a list of names for the splitting
sparcs_products = sorted(os.listdir(params.project_path + "data/raw/SPARCS_dataset/"))
sparcs_products = [f for f in sparcs_products if 'data.tif' in f]
sparcs_products = [f for f in sparcs_products if 'aux' not in f]
# Randomize the list of SPARCS products
seed = 1
random.seed(seed)
random.shuffle(sparcs_products)
# Do the training/testing with k-fold cross-validation
params.modelID = datetime.datetime.now().strftime("%y%m%d%H%M%S")
for k in range(k_folds):
# Define train and test tiles (note that params.test_tiles[0] are training and .test_tiles[1] are test)
if 'SPARCS' in params.train_dataset:
products_per_fold = int(80/k_folds)
# Define products for test
params.test_tiles[1] = sparcs_products[k*products_per_fold:(k+1)*products_per_fold]
# Define products for train by loading all sparcs products and then removing test products
params.test_tiles[0] = sparcs_products
for product in params.test_tiles[1]:
params.test_tiles[0] = [f for f in params.test_tiles[0] if product not in f]
elif 'Biome' in params.train_dataset:
# Swap train and test set for 2-fold CV
temp = params.test_tiles[0]
params.test_tiles[0] = params.test_tiles[1]
params.test_tiles[1] = temp
# Train and evaluate
params.modelID = params.modelID[0:12] + '-CV' + str(k+1) + 'of' + str(k_folds) # Used for saving results
model = Unet(params)
print("Training on fold " + str(k + 1) + " of " + str(k_folds))
model.train(params)
# Run model on test data set and save output
evaluate_test_set(model, params.test_dataset, params.num_gpus, params)
if args.test:
# If a model has been trained, use that one. If not, load a new one.
if args.model == 'U-net':
model = Unet(params)
evaluate_test_set(model, params.test_dataset, params.num_gpus, params)
# Print execution time
exec_time = str(time.time() - start_time)
print("\n---------------------------------------")
print("Script executed in: " + exec_time + "s")
print("---------------------------------------")