-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathrga_countries_speed_data.R
57 lines (49 loc) · 2.42 KB
/
rga_countries_speed_data.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
require(googleVis)
require(plyr)
# We need to aggreagate data across countries first. teh function below does a nice job and many more
# GroupBy function -------------------------------------------------------
## Summarizes data.
## Gives count, mean, standard deviation, standard error of the mean, and confidence interval (default 95%).
## data: a data frame.
## measurevar: the name of a column that contains the variable to be summariezed
## groupvars: a vector containing names of columns that contain grouping variables
## na.rm: a boolean that indicates whether to ignore NA's
## conf.interval: the percent range of the confidence interval (default is 95%)
summarySE <- function(data=NULL, measurevar, groupvars=NULL, na.rm=FALSE, conf.interval=.95, .drop=TRUE) {
require(plyr)
# New version of length which can handle NA's: if na.rm==T, don't count them
length2 <- function (x, na.rm=FALSE) {
if (na.rm) sum(!is.na(x))
else length(x)
}
# This is does the summary; it's not easy to understand...
datac <- ddply(data, groupvars, .drop=.drop,
.fun= function(xx, col, na.rm) {
c( N = length2(xx[,col], na.rm=na.rm),
mean = mean (xx[,col], na.rm=na.rm),
sd = sd (xx[,col], na.rm=na.rm)
)
},
measurevar,
na.rm
)
# Rename the "mean" column
datac <- rename(datac, c("mean"=measurevar))
datac$se <- datac$sd / sqrt(datac$N) # Calculate standard error of the mean
# Confidence interval multiplier for standard error
# Calculate t-statistic for confidence interval:
# e.g., if conf.interval is .95, use .975 (above/below), and use df=N-1
ciMult <- qt(conf.interval/2 + .5, datac$N-1)
datac$ci <- datac$se * ciMult
return(datac)
}
# Actual Viz --------------------------------------------------------------
## We need to create an aggregation of the dataset to get the everage/median for the plot
require(googleVis)
input<- summarySE(final_dataset, measurevar="avgPageLoadTime",groupvars="country")
select<- input[which(input$country!="<NA>"),]
Map<- data.frame(select$country, select$avgPageLoadTime)
names(Map)<- c("Country", "avgPageLoadTime")
Geo=gvisGeoMap(Map, locationvar="Country", numvar="avgPageLoadTime",
options=list(height=350, dataMode='regions'))
plot(Geo)