-
Notifications
You must be signed in to change notification settings - Fork 134
/
Copy pathmanifest.bioimage.io.yaml
1692 lines (1575 loc) · 110 KB
/
manifest.bioimage.io.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
format_version: 0.2.2
type: collection
name: ZeroCost4Mic Collection
tags: [zero, bioimage.io]
description: "Resources for BioImgage.IO curated by the ZeroCost4Mic team."
authors: []
documentation: /~https://github.com/HenriquesLab/ZeroCostDL4Mic/wiki
maintainers: []
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021)"
doi: 10.1038/s41467-021-22518-0
config:
id: zero
name: ZeroCostDL4Mic
version: 1.7.1
tags:
- ZeroCostDL4Mic
logo: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Wiki_files/ZeroCostLogo.png
icon: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Wiki_files/ZeroCostLogo.png
splash_title: ZeroCostDL4Mic
splash_subtitle: A Google Colab based no-cost toolbox to explore Deep-Learning in Microscopy
splash_feature_list: []
explore_button_text: Start Exploring
background_image: static/img/zoo-background.svg
resource_types:
- model
- application
- dataset
default_type: application
url_root: https://raw.githubusercontent.com/oeway/ZeroCostDL4Mic/master
#------------------------------------- ZeroCostDL4Mic Datasets ---------------------------------------------
collection:
# see here for the format: https://bioimage.io/#/?show=contribute
# replace this with your actual dataset
- type: dataset
id: Dataset_StarDist_2D_ZeroCostDL4Mic_2D
name: StarDist (2D) example training and test dataset - ZeroCostDL4Mic
description: Fluorescence microscopy (SiR-DNA) and masks obtained via manual segmentation
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
authors: [Johanna Jukkala, Guillaume Jacquemet]
documentation: >-
https://doi.org/10.5281/zenodo.3715492
tags: [StarDist, segmentation, ZeroCostDL4Mic, 2D]
download_url: https://doi.org/10.5281/zenodo.3715492
covers:
- /~https://github.com/HenriquesLab/ZeroCostDL4Mic/raw/master/Wiki_files/Stardist_nuclei_masks.png
- type: dataset
id: Dataset_Noise2Void_2D_ZeroCostDL4Mic
name: Noise2Void (2D) example training and test dataset - ZeroCostDL4Mic
description: Fluorescence microscopy (paxillin-GFP)
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
authors: [Aki Stubb, Guillaume Jacquemet, Johanna Ivaska]
documentation: >-
https://doi.org/10.5281/zenodo.3713315
tags: [Noise2Void, denoising, ZeroCostDL4Mic, 2D]
download_url: https://doi.org/10.5281/zenodo.3713315
covers:
- /~https://github.com/HenriquesLab/ZeroCostDL4Mic/raw/master/Wiki_files/N2V_wiki.png
- type: dataset
id: Dataset_Noise2Void_3D_ZeroCostDL4Mic
name: Noise2Void (3D) example training and test dataset - ZeroCostDL4Mic
description: Fluorescence microscopy (Lifeact-RFP)
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
authors: [Guillaume Jacquemet]
documentation: >-
https://doi.org/10.5281/zenodo.3713326
tags: [Noise2Void, denoising, ZeroCostDL4Mic, 3D]
download_url: https://doi.org/10.5281/zenodo.3713326
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/N2V_3D_dataset.png
- type: dataset
id: Dataset_CARE_2D_ZeroCostDL4Mic
name: CARE (2D) example training and test dataset - ZeroCostDL4Mic
description: Fluorescence microscopy (Lifeact-RFP)
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
authors: [Guillaume Jacquemet]
documentation: >-
https://doi.org/10.5281/zenodo.3713330
tags: [CARE, denoising, ZeroCostDL4Mic, 2D]
download_url: https://doi.org/10.5281/zenodo.3713330
covers:
- /~https://github.com/HenriquesLab/ZeroCostDL4Mic/raw/master/Wiki_files/CARE_wiki.png
- type: dataset
id: Dataset_CARE_3D_ZeroCostDL4Mic
name: CARE (3D) example training and test dataset - ZeroCostDL4Mic
description: Fluorescence microscopy (Lifeact-RFP)
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
authors: [Guillaume Jacquemet]
documentation: >-
https://doi.org/10.5281/zenodo.3713337
tags: [CARE, denoising, ZeroCostDL4Mic, 3D]
download_url: https://doi.org/10.5281/zenodo.3713337
covers:
- /~https://github.com/HenriquesLab/ZeroCostDL4Mic/raw/master/Wiki_files/CARE_wiki.png
- type: dataset
id: Dataset_fnet_3D_ZeroCostDL4Mic
name: Label-free prediction (fnet) example training and test dataset - ZeroCostDL4Mic
description: Confocal microscopy data (TOM20 labeled with Alexa Fluor 594)
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
authors: [Christoph Spahn]
documentation: >-
https://doi.org/10.5281/zenodo.3748967
tags: [fnet, labelling, ZeroCostDL4Mic, 3D]
download_url: https://doi.org/10.5281/zenodo.3748967
covers:
- /~https://github.com/HenriquesLab/ZeroCostDL4Mic/raw/master/Wiki_files/Fnet_exemplary_data_mitochondria.png
- type: dataset
id: Dataset_Deep-STORM_ZeroCostDL4Mic
name: Deep-STORM training and example dataset - ZeroCostDL4Mic
description: Time-series of simulated, randomly distributed single-molecule localization (SMLM) data (Training dataset). Experimental time-series dSTORM acquisition of Glial cells stained with phalloidin for actin (Example dataset).
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
authors: [Christophe Leterrier, Romain F. Laine]
documentation: >-
https://doi.org/10.5281/zenodo.3959089
tags: [SMLM, Deep-STORM, ZeroCostDL4Mic, 2D]
download_url: https://doi.org/10.5281/zenodo.3959089
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/DeepSTORM_dataset.png
- type: dataset
id: Dataset_CycleGAN_ZeroCostDL4Mic
name: CycleGAN example training and test dataset - ZeroCostDL4Mic
description: Unpaired microscopy images (fluorescence) of microtubules (Spinning-disk and SRRF reconstructed images)
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
authors: [Guillaume Jacquemet]
documentation: >-
https://doi.org/10.5281/zenodo.3941884
tags: [CycleGAN, ZeroCostDL4Mic]
download_url: https://doi.org/10.5281/zenodo.3941884
covers:
- /~https://github.com/HenriquesLab/ZeroCostDL4Mic/raw/master/BioimageModelZoo/Images/CycleGAN_dataset.png
- type: dataset
id: Dataset_pix2pix_ZeroCostDL4Mic
name: pix2pix example training and test dataset - ZeroCostDL4Mic
description: Paired microscopy images (fluorescence) of lifeact-RFP and sir-DNA
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
authors: [Guillaume Jacquemet]
documentation: >-
https://doi.org/10.5281/zenodo.3941889
tags: [pix2pix, ZeroCostDL4Mic]
download_url: https://doi.org/10.5281/zenodo.3941889
covers:
- /~https://github.com/HenriquesLab/ZeroCostDL4Mic/raw/master/BioimageModelZoo/Images/pix2pix_dataset.png
- type: dataset
id: Dataset_YOLOv2_ZeroCostDL4Mic
name: YoloV2 example training and test dataset - ZeroCostDL4Mic
description: 2D grayscale .png images with corresponding bounding box annotations in .xml PASCAL Voc format.
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
authors: [Guillaume Jacquemet, Lucas von Chamier]
documentation: >-
https://doi.org/10.5281/zenodo.3941908
tags: [YOLOv2, ZeroCostDL4Mic]
download_url: https://doi.org/10.5281/zenodo.3941908
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/yolo_dataset.png
- type: dataset
id: Dataset_StarDist_Fluo_ZeroCostDL4Mic
name: Combining StarDist and TrackMate example 1 - Breast cancer cell dataset
description: Fluorescence microscopy of Nuclei (SiR-DNA) and masks obtained via manual segmentation
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "Elnaz Fazeli, Nathan H. Roy, Gautier Follain, Romain F. Laine, Lucas von Chamier, Pekka E. Hänninen, John E. Eriksson, Jean-Yves Tinevez, Guillaume Jacquemet. Automated cell tracking using StarDist and TrackMate. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.09.22.306233"
doi: https://doi.org/10.1101/2020.09.22.306233
authors: [Guillaume Jacquemet]
documentation: >-
https://zenodo.org/record/4034976
tags: [StarDist, ZeroCostDL4Mic]
download_url: https://zenodo.org/record/4034976
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Wiki_files/StarDist_trainingfluo_trackmate.png
- type: dataset
id: Dataset_StarDist_brightfield_ZeroCostDL4Mic
name: Combining StarDist and TrackMate example 2 - T cell dataset
description: Paired brightfield images of migrating T cells and corresponding masks
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "Elnaz Fazeli, Nathan H. Roy, Gautier Follain, Romain F. Laine, Lucas von Chamier, Pekka E. Hänninen, John E. Eriksson, Jean-Yves Tinevez, Guillaume Jacquemet. Automated cell tracking using StarDist and TrackMate. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.09.22.306233"
doi: https://doi.org/10.1101/2020.09.22.306233
authors: [Nathan H. Roy, Guillaume Jacquemet]
documentation: >-
https://zenodo.org/record/4034929
tags: [StarDist, ZeroCostDL4Mic]
download_url: https://zenodo.org/record/4034929
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Wiki_files/StarDist_trainingTcells_trackmate.png
- type: dataset
id: Dataset_StarDist_brightfield2_ZeroCostDL4Mic
name: Combining StarDist and TrackMate example 3 - Flow chamber dataset
description: Paired brightfield images of cancer cells and corresponding masks
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "Elnaz Fazeli, Nathan H. Roy, Gautier Follain, Romain F. Laine, Lucas von Chamier, Pekka E. Hänninen, John E. Eriksson, Jean-Yves Tinevez, Guillaume Jacquemet. Automated cell tracking using StarDist and TrackMate. bioRxiv, 2020. DOI: https://doi.org/10.1101/2020.09.22.306233"
doi: https://doi.org/10.1101/2020.09.22.306233
authors: [Gautier Follain, Guillaume Jacquemet]
documentation: >-
https://zenodo.org/record/4034939
tags: [StarDist, ZeroCostDL4Mic]
download_url: https://zenodo.org/record/4034939
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Wiki_files/StarDist_trainingflo_trackmate.png
- type: dataset
id: Dataset_StarDist_fluo2_ZeroCostDL4Mic
name: training dataset for automated tracking of MDA-MB-231 and BT20 cells
description: Fluorescence microscopy of Nuclei (SiR-DNA) and masks obtained via manual segmentation
cite:
- text: "Moreno-Layseca P, Jäntti NZ, Godbole R, Sommer C, Jacquemet G, Al-Akhrass H, Conway JRW, Kronqvist P, Kallionpää RE, Oliveira-Ferrer L, Cervero P, Linder S, Aepfelbacher M, Zauber H, Rae J, Parton RG, Disanza A, Scita G, Mayor S, Selbach M, Veltel S, Ivaska J. Cargo-specific recruitment in clathrin- and dynamin-independent endocytosis. Nat Cell Biol. 2021 Oct;23(10):1073-1084. doi: 10.1038/s41556-021-00767-x. Epub 2021 Oct 6. PMID: 34616024."
doi: https://doi.org/10.1038/s41556-021-00767-x
authors: [Hussein Al-Akhrass, Johanna Ivaska, Guillaume Jacquemet]
documentation: >-
https://zenodo.org/record/4811213
tags: [StarDist, ZeroCostDL4Mic]
download_url: https://zenodo.org/record/4811213
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/Moreno_dataset_stardist.png
- type: dataset
id: Dataset_Noisy_Nuclei_ZeroCostDL4Mic
name: Noisy nuclei dataset.
description: This dataset contains a denoising training and test dataset for deep learning applications. The training dataset comprises 20 paired matching noisy and high signal-to-noise images. The test dataset contains five paired matching noisy and high signal-to-noise images. Images are Fluorescence microscopy (SiR-DNA) images acquired using a spinning disk confocal microscope with a 20x 0.8 NA objective.
cite:
- text: "Laine RF, Arganda-Carreras I, Henriques R, Jacquemet G. Avoiding a replication crisis in deep-learning-based bioimage analysis. Nat Methods. 2021 Oct;18(10):1136-1144. doi: 10.1038/s41592-021-01284-3. PMID: 34608322; PMCID: PMC7611896. "
doi: https://doi.org/10.1038/s41592-021-01284-3
authors: [Guillaume Jacquemet]
documentation: >-
https://zenodo.org/record/5750174
tags: [denoising, CARE, Noise2Void, DecoNoising, ZeroCostDL4Mic]
download_url: https://zenodo.org/record/5750174
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/NoisyNuclei_dataset.png
#------------------------------------- DeepBacs Datasets ---------------------------------------------
- type: dataset
id: Dataset_U-Net_2D_multilabel_DeepBacs
name: Multi-label U-Net training dataset (Bacillus subtilis) - DeepBacs
description: Paired bright field images and segmented binary masks of live E. coli cells.
cite:
- text: "Christoph Spahn, Romain F. Laine, Pedro Matos Pereira, Estibaliz Gómez-de-Mariscal, Lucas von Chamier, Mia Conduit, Mariana Gomes de Pinho, Guillaume Jacquemet, Séamus Holden, Mike Heilemann, Ricardo Henriques DeepBacs: Bacterial image analysis using open-source deep learning approaches. bioRxiv 2021.11.03.467152; doi: https://doi.org/10.1101/2021.11.03.467152"
doi: https://doi.org/10.1101/2021.11.03.467152
authors: [Mia Conduit, Séamus Holden]
documentation: /~https://github.com/HenriquesLab/DeepBacs/wiki
tags: [U-Net, multilabel, segmentation, DeepBacs, 2D]
download_url: https://zenodo.org/record/5639253
covers:
- https://zenodo.org/api/iiif/v2/8ba101cf-97ac-4e68-9fff-4cc130b5ea81:93b67447-8b0a-4053-a522-9c141623ca6f:A_Multilabel_U-Net_example_B.subtilis.png/full/750,/0/default.png
- type: dataset
id: Dataset_U-Net_2D_DeepBacs
name: Escherichia coli bright field segmentation dataset - DeepBacs
description: Paired bright field and segmented mask images of live E. coli cells imaged under bright field.
cite:
- text: "Christoph Spahn, Romain F. Laine, Pedro Matos Pereira, Estibaliz Gómez-de-Mariscal, Lucas von Chamier, Mia Conduit, Mariana Gomes de Pinho, Guillaume Jacquemet, Séamus Holden, Mike Heilemann, Ricardo Henriques DeepBacs: Bacterial image analysis using open-source deep learning approaches. bioRxiv 2021.11.03.467152; doi: https://doi.org/10.1101/2021.11.03.467152"
doi: https://doi.org/10.1101/2021.11.03.467152
authors: [Spahn Christoph, Heilemann Mike]
documentation: /~https://github.com/HenriquesLab/DeepBacs/wiki
tags: [U-Net, segmentation, DeepBacs, 2D]
download_url: https://zenodo.org/record/5550935
covers:
- https://zenodo.org/api/iiif/v2/c6dca42a-62cd-423d-8216-b2ae20dab6a3:790a798b-26b2-425b-b1b6-9545d89daa7d:A_Segmentation_E.coli_large_FoV.png/full/750,/0/default.png
- type: dataset
id: Dataset_StarDist_2D_DeepBacs
name: Mixed segmentation dataset - DeepBacs
description: Mixed training and test images of S. aureus, E. coli and B. subtilis for cell segmentation using StarDist.
cite:
- text: "Christoph Spahn, Romain F. Laine, Pedro Matos Pereira, Estibaliz Gómez-de-Mariscal, Lucas von Chamier, Mia Conduit, Mariana Gomes de Pinho, Guillaume Jacquemet, Séamus Holden, Mike Heilemann, Ricardo Henriques DeepBacs: Bacterial image analysis using open-source deep learning approaches. bioRxiv 2021.11.03.467152; doi: https://doi.org/10.1101/2021.11.03.467152"
doi: https://doi.org/10.1101/2021.11.03.467152
authors: [Christoph Spahn, Mike Heilemann, Mia Conduit, Séamus Holden, Pedro Matos Pereira, Mariana Pinho]
documentation: /~https://github.com/HenriquesLab/DeepBacs/wiki
tags: [StarDist, segmentation, DeepBacs, 2D]
download_url: https://zenodo.org/record/5551009
covers:
- https://zenodo.org/api/iiif/v2/c6dca42a-62cd-423d-8216-b2ae20dab6a3:790a798b-26b2-425b-b1b6-9545d89daa7d:A_Segmentation_E.coli_large_FoV.png/full/750,/0/default.png
- type: dataset
id: Dataset_SplineDist_2D_DeepBacs
name: Escherichia coli bright field segmentation dataset - DeepBacs
description: Training and test images of live E. coli cells imaged under bright field for the task of segmentation.
cite:
- text: "Christoph Spahn, Romain F. Laine, Pedro Matos Pereira, Estibaliz Gómez-de-Mariscal, Lucas von Chamier, Mia Conduit, Mariana Gomes de Pinho, Guillaume Jacquemet, Séamus Holden, Mike Heilemann, Ricardo Henriques DeepBacs: Bacterial image analysis using open-source deep learning approaches. bioRxiv 2021.11.03.467152; doi: https://doi.org/10.1101/2021.11.03.467152"
doi: https://doi.org/10.1101/2021.11.03.467152
authors: [Christoph Spahn, Mike Heilemann]
documentation: /~https://github.com/HenriquesLab/DeepBacs/wiki
tags: [StarDist, segmentation, DeepBacs, 2D]
download_url: https://zenodo.org/record/5550935
covers:
- https://zenodo.org/api/iiif/v2/c6dca42a-62cd-423d-8216-b2ae20dab6a3:790a798b-26b2-425b-b1b6-9545d89daa7d:A_Segmentation_E.coli_large_FoV.png/full/750,/0/default.png
- type: dataset
id: Dataset_Noise2Void_2D_subtilis_DeepBacs
name: Bacillus subtilis denoising dataset - DeepBacs
description: Live-cell time series of vertically aligned B. subtilis cells expressing FtsZ-GFP protein fusion.
cite:
- text: "Christoph Spahn, Romain F. Laine, Pedro Matos Pereira, Estibaliz Gómez-de-Mariscal, Lucas von Chamier, Mia Conduit, Mariana Gomes de Pinho, Guillaume Jacquemet, Séamus Holden, Mike Heilemann, Ricardo Henriques DeepBacs: Bacterial image analysis using open-source deep learning approaches. bioRxiv 2021.11.03.467152; doi: https://doi.org/10.1101/2021.11.03.467152"
doi: https://doi.org/10.1101/2021.11.03.467152
authors: [Mia Conduit, Séamus Holden]
documentation: /~https://github.com/HenriquesLab/DeepBacs/wiki
tags: [Noise2Void, denoising, DeepBacs, 2D]
download_url: https://zenodo.org/record/5551135
covers:
- https://zenodo.org/api/iiif/v2/effa726a-dcdb-47a5-bd2e-63a4a6648ca7:aad7cd51-d389-4cf3-a84e-2d93d1891f20:B.subtilis_VerCINI_examples.png/full/750,/0/default.png
- type: dataset
id: Dataset_CARE_2D_coli_DeepBacs
name: Escherichia coli nucleoid denoising dataset - DeepBacs
description: Paired training and test images of H-NS-mScarlet-I expressing E. coli cells for image denoising.
cite:
- text: "Christoph Spahn, Romain F. Laine, Pedro Matos Pereira, Estibaliz Gómez-de-Mariscal, Lucas von Chamier, Mia Conduit, Mariana Gomes de Pinho, Guillaume Jacquemet, Séamus Holden, Mike Heilemann, Ricardo Henriques DeepBacs: Bacterial image analysis using open-source deep learning approaches. bioRxiv 2021.11.03.467152; doi: https://doi.org/10.1101/2021.11.03.467152"
doi: https://doi.org/10.1101/2021.11.03.467152
authors: [Christoph Spahn, Mike Heilemann]
documentation: /~https://github.com/HenriquesLab/DeepBacs/wiki
tags: [Noise2Void, CARE, denoising, DeepBacs, 2D]
download_url: https://zenodo.org/record/5551112
covers:
- https://zenodo.org/api/iiif/v2/0417c6d1-0fe3-4d48-bc5a-dfaee6398433:532d7c49-5961-4d61-8ba2-a040f2f19cfd:A_E.coli_H-NS_mScarlet_examples.png/full/750,/0/default.png
- type: dataset
id: Dataset_fnet_DeepBacs
name: Artificial labeling of E. coli membranes dataset - DeepBacs
description: Training and test images of E. coli cells for artificial labeling of membranes in brightfield images using fnet or CARE, as well as trained models for prediction of super-resolution membranes.
cite:
- text: "Christoph Spahn, Romain F. Laine, Pedro Matos Pereira, Estibaliz Gómez-de-Mariscal, Lucas von Chamier, Mia Conduit, Mariana Gomes de Pinho, Guillaume Jacquemet, Séamus Holden, Mike Heilemann, Ricardo Henriques DeepBacs: Bacterial image analysis using open-source deep learning approaches. bioRxiv 2021.11.03.467152; doi: https://doi.org/10.1101/2021.11.03.467152"
doi: https://doi.org/10.1101/2021.11.03.467152
authors: [Christoph Spahn, Mike Heilemann]
documentation: /~https://github.com/HenriquesLab/DeepBacs/wiki
tags: [fnet, CARE, artificial labelling, DeepBacs, 2D]
download_url: https://zenodo.org/record/5551123
covers:
- https://zenodo.org/api/iiif/v2/850bd89d-e7ca-4009-80ad-865819df1b6d:c18f2e19-3761-4852-8034-4cefcf7ca318:Artificial_labeling.png/full/750,/0/default.png
- type: dataset
id: Dataset_YOLOv2_coli_DeepBacs
name: Escherichia coli growth stage object detection dataset - DeepBacs
description: Training and test images of E. coli cells for object detection and classification.
cite:
- text: "Christoph Spahn, Romain F. Laine, Pedro Matos Pereira, Estibaliz Gómez-de-Mariscal, Lucas von Chamier, Mia Conduit, Mariana Gomes de Pinho, Guillaume Jacquemet, Séamus Holden, Mike Heilemann, Ricardo Henriques DeepBacs: Bacterial image analysis using open-source deep learning approaches. bioRxiv 2021.11.03.467152; doi: https://doi.org/10.1101/2021.11.03.467152"
doi: https://doi.org/10.1101/2021.11.03.467152
authors: [Christoph Spahn, Mike Heilemann]
documentation: /~https://github.com/HenriquesLab/DeepBacs/wiki
tags: [YOLOv2, object detection, DeepBacs, 2D]
download_url: https://zenodo.org/record/5551016
covers:
- https://zenodo.org/api/iiif/v2/e30f5766-cc61-4a7c-9d36-30681f2dcbc2:677b2046-5d0b-49df-b231-b5470b6fcbc8:A_Object_detection_cell_cycle.png/full/750,/0/default.png
- type: dataset
id: Dataset_YOLOv2_antibiotic_DeepBacs
name: Escherichia coli antibiotic phenotyping object detection dataset - DeepBacs
description: Training and test images of E. coli cells treated with different antibiotics for antibiotic phenotyping.
cite:
- text: "Christoph Spahn, Romain F. Laine, Pedro Matos Pereira, Estibaliz Gómez-de-Mariscal, Lucas von Chamier, Mia Conduit, Mariana Gomes de Pinho, Guillaume Jacquemet, Séamus Holden, Mike Heilemann, Ricardo Henriques DeepBacs: Bacterial image analysis using open-source deep learning approaches. bioRxiv 2021.11.03.467152; doi: https://doi.org/10.1101/2021.11.03.467152"
doi: https://doi.org/10.1101/2021.11.03.467152
authors: [Christoph Spahn, Mike Heilemann]
documentation: /~https://github.com/HenriquesLab/DeepBacs/wiki
tags: [YOLOv2, object detection, DeepBacs, 2D]
download_url: https://zenodo.org/record/5551057
covers:
- https://zenodo.org/api/iiif/v2/5b4a4304-ea44-47ce-9c75-4a069bfc9536:e3c27642-4605-42c3-ad3c-1e120917b97e:Antibiotic_profiling_examples.png/full/750,/0/default.png
#------------------------------------- Notebooks ---------------------------------------------
- type: application
id: notebook_preview
source: https://raw.githubusercontent.com/bioimage-io/nbpreview/master/notebook-preview.imjoy.html
- type: application
id: Notebook_U-Net_2D_ZeroCostDL4Mic
name: U-Net (2D) - ZeroCostDL4Mic
description: 2D binary segmentation. U-Net is an encoder-decoder architecture originally used for image segmentation. The first half of the U-Net architecture is a downsampling convolutional neural network which acts as a feature extractor from input images. The other half upsamples these results and restores an image by combining results from downsampling with the upsampled images. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "Olaf Ronneberger, Philipp Fischer, Thomas Brox. U-Net: Convolutional Networks for Biomedical Image Segmentation. arXiv:1505.04597. https://arxiv.org/abs/1505.04597"
url: https://arxiv.org/abs/1505.04597
authors:
- Romain Laine and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/2D_Unet_notebook.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/U-Net_2D_ZeroCostDL4Mic.ipynb
documentation: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/README.md
tags: [colab, notebook, U-Net, segmentation, ZeroCostDL4Mic, 2D, dl4miceverywhere]
download_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/U-Net_2D_ZeroCostDL4Mic.ipynb
git_repo: /~https://github.com/HenriquesLab/ZeroCostDL4Mic
license: MIT
links:
- Notebook Preview
- Dataset_U-Net_2D_DeepBacs
version: 2.2.1
config:
dl4miceverywhere:
cuda_version: 11.8.0
cudnn_version: 8.6.0.163
description: U-Net_2D_DL4Mic is the conversion of the 2D U-Net from ZeroCostDL4Mic.
dl4miceverywhere_version: 2.1.0
docker_hub_image: u-net_2d_zerocostdl4mic-z2.2.1-d2.1.0
notebook_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/U-Net_2D_ZeroCostDL4Mic.ipynb
notebook_version: 2.2.1
python_version: '3.10'
requirements_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/requirements_files/2D_UNet_requirements_simple.txt
sections_to_remove: 1.1. 1.2. 2. 6.3.
ubuntu_version: '22.04'
- type: application
id: Notebook_U-Net_3D_ZeroCostDL4Mic
name: U-Net (3D) - ZeroCostDL4Mic
description: 3D binary segmentation. The 3D U-Net was first introduced by Çiçek et al for learning dense volumetric segmentations from sparsely annotated ground-truth data building upon the original U-Net architecture by Ronneberger et al. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "Özgün Çiçek, Ahmed Abdulkadir, Soeren S. Lienkamp, Thomas Brox, Olaf Ronneberger. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. https://arxiv.org/abs/1606.06650"
url: https://arxiv.org/abs/1606.06650
authors:
- Daniel Krentzel and Estibaliz Gómez de Mariscal andthe ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/3D_Unet_notebook.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/U-Net_3D_ZeroCostDL4Mic.ipynb
documentation: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/README.md
tags: [colab, notebook, U-Net, segmentation, ZeroCostDL4Mic, 3D, dl4miceverywhere]
download_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/U-Net_3D_ZeroCostDL4Mic.ipynb
git_repo: /~https://github.com/HenriquesLab/ZeroCostDL4Mic
license: MIT
links:
- Notebook Preview
version: 2.2.1
config:
dl4miceverywhere:
cuda_version: 11.8.0
cudnn_version: 8.6.0.163
description: U-Net_3D_DL4Mic is the conversion of the 3D U-Net from ZeroCostDL4Mic.
dl4miceverywhere_version: 2.1.0
docker_hub_image: u-net_3d_zerocostdl4mic-z2.2.1-d2.1.0
notebook_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/U-Net_3D_ZeroCostDL4Mic.ipynb
notebook_version: 2.2.1
python_version: '3.10'
requirements_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/requirements_files/3D_UNet_requirements_simple.txt
sections_to_remove: 1.1. 1.2. 2. 6.2.
ubuntu_version: '22.04'
- type: application
id: Notebook_StarDist_2D_ZeroCostDL4Mic
name: StarDist (2D) - ZeroCostDL4Mic
description: 2D instance segmentation of oval objects (ie nuclei). StarDist is a deep-learning method that can be used to segment cell nuclei in 2D (xy) single images or in stacks (xyz). Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "Uwe Schmidt, Martin Weigert, Coleman Broaddus, Gene Myers. Cell Detection with Star-Convex Polygons. MICCAI 2018 (2018). https://doi.org/10.1007/978-3-030-00934-2_30"
doi: https://doi.org/10.1007/978-3-030-00934-2_30
authors:
- Guillaume Jacquemet and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/2D_Stardist_notebook.png
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Wiki_files/StarDist_trainingTcells_trackmate.png
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Wiki_files/StarDist_trainingflo_trackmate.png
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Wiki_files/StarDist_trainingfluo_trackmate.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/StarDist_2D_ZeroCostDL4Mic.ipynb
documentation: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/README.md
tags: [colab, notebook, StarDist, segmentation, ZeroCostDL4Mic, 2D, dl4miceverywhere]
download_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/StarDist_2D_ZeroCostDL4Mic.ipynb
git_repo: /~https://github.com/HenriquesLab/ZeroCostDL4Mic
license: MIT
links:
- Notebook Preview
- Dataset_StarDist_2D_ZeroCostDL4Mic_2D
- Dataset_StarDist_Fluo_ZeroCostDL4Mic
- Dataset_StarDist_brightfield_ZeroCostDL4Mic
- Dataset_StarDist_brightfield2_ZeroCostDL4Mic
- Dataset_StarDist_fluo2_ZeroCostDL4Mic
- Dataset_StarDist_2D_DeepBacs
version: '1.20.2'
config:
dl4miceverywhere:
cuda_version: 11.8.0
cudnn_version: 8.6.0.163
description: StarDist_2D_DL4Mic is the conversion of the 2D StarDist from ZeroCostDL4Mic.
dl4miceverywhere_version: 2.1.0
docker_hub_image: stardist_2d_zerocostdl4mic-z1.20.2-d2.1.0
notebook_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/StarDist_2D_ZeroCostDL4Mic.ipynb
notebook_version: 1.20.2
python_version: '3.10'
requirements_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/requirements_files/StarDist_2D_requirements_simple.txt
sections_to_remove: 1.1. 1.2. 2. 6.3.
ubuntu_version: '22.04'
- type: application
id: Notebook_StarDist_3D_ZeroCostDL4Mic
name: StarDist (3D) - ZeroCostDL4Mic
description: 3D instance segmentation of oval objects (ie nuclei). StarDist is a deep-learning method that can be used to segment cell nuclei in 3D (xyz) images. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "Martin Weigert, Uwe Schmidt, Robert Haase, Ko Sugawara, Gene Myers. Star-convex Polyhedra for 3D Object Detection and Segmentation in Microscopy. \tarXiv. https://arxiv.org/abs/1908.03636"
url: https://arxiv.org/abs/1908.03636
authors:
- Guillaume Jacquemet and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/StarDist_3D.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/StarDist_3D_ZeroCostDL4Mic.ipynb
documentation: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/README.md
tags: [colab, notebook, StarDist, segmentation, ZeroCostDL4Mic, 3D, dl4miceverywhere]
download_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/StarDist_3D_ZeroCostDL4Mic.ipynb
git_repo: /~https://github.com/HenriquesLab/ZeroCostDL4Mic
license: MIT
links:
- Notebook Preview
version: 1.15.3
config:
dl4miceverywhere:
cuda_version: 11.8.0
cudnn_version: 8.6.0.163
description: StarDist_3D_DL4Mic is the conversion of the 3D StarDist from ZeroCostDL4Mic.
dl4miceverywhere_version: 2.1.0
docker_hub_image: stardist_3d_zerocostdl4mic-z1.15.3-d2.1.0
notebook_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/StarDist_3D_ZeroCostDL4Mic.ipynb
notebook_version: 1.15.3
python_version: '3.10'
requirements_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/requirements_files/StarDist_3D_requirements_simple.txt
sections_to_remove: 1.1. 1.2. 2. 6.2.
ubuntu_version: '22.04'
- type: application
id: Notebook_Noise2Void_2D_ZeroCostDL4Mic
name: Noise2Void (2D) - ZeroCostDL4Mic
description: self-supervised denoising of 2D images. Noise2Void 2D is deep-learning method that can be used to denoise 2D microscopy images. By running this notebook, you can train your own network and denoise your images. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "A. Krull, T. Buchholz and F. Jug, Noise2Void Learning Denoising From Single Noisy Images. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2124-2132, https://doi.org/10.1109/CVPR.2019.00223."
doi: https://doi.org/10.1109/CVPR.2019.00223
authors:
- Romain Laine and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/N2V_2D_notebook.png
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/N2V2D_notebook_3.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/Noise2Void_2D_ZeroCostDL4Mic.ipynb
documentation: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/README.md
tags: [colab, notebook, Noise2Void, denoising, ZeroCostDL4Mic, 2D, dl4miceverywhere]
download_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/Noise2Void_2D_ZeroCostDL4Mic.ipynb
git_repo: /~https://github.com/HenriquesLab/ZeroCostDL4Mic
license: MIT
links:
- Notebook Preview
- Dataset_Noise2Void_2D_ZeroCostDL4Mic
- Dataset_Noise2Void_2D_subtilis_DeepBacs
- Dataset_Noisy_Nuclei_ZeroCostDL4Mic
- Dataset_CARE_2D_coli_DeepBacs
version: 1.16.2
config:
dl4miceverywhere:
cuda_version: 11.8.0
cudnn_version: 8.6.0.163
description: Noise2Void_2D_DL4Mic is the conversion of the 2D Noise2Void from ZeroCostDL4Mic.
dl4miceverywhere_version: 2.1.0
docker_hub_image: noise2void_2d_zerocostdl4mic-z1.16.2-d2.1.0
notebook_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/Noise2Void_2D_ZeroCostDL4Mic.ipynb
notebook_version: 1.16.2
python_version: '3.10'
requirements_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/requirements_files/Noise2Void_2D_requirements_simple.txt
sections_to_remove: 1.1. 1.2. 2. 6.3.
ubuntu_version: '22.04'
- type: application
id: Notebook_Noise2Void_3D_ZeroCostDL4Mic
name: Noise2VOID (3D) - ZeroCostDL4Mic
description: self-supervised denoising of 3D images. Noise2VOID 3D is deep-learning method that can be used to denoise 3D microscopy images. By running this notebook, you can train your own network and denoise your images. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "A. Krull, T. Buchholz and F. Jug. Noise2Void Learning Denoising From Single Noisy Images. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2019, pp. 2124-2132, https://doi.org/10.1109/CVPR.2019.00223."
doi: https://doi.org/10.1109/CVPR.2019.00223
authors:
- Romain Laine and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/N2V_3D_notebook.png
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/N2V_3D_notebook_2.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/Noise2Void_3D_ZeroCostDL4Mic.ipynb
documentation: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/README.md
tags: [colab, notebook, Noise2Void, denoising, ZeroCostDL4Mic, 3D, dl4miceverywhere]
download_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/Noise2Void_3D_ZeroCostDL4Mic.ipynb
git_repo: /~https://github.com/HenriquesLab/ZeroCostDL4Mic
license: MIT
links:
- Notebook Preview
- Dataset_Noise2Void_3D_ZeroCostDL4Mic
version: 1.16.2
config:
dl4miceverywhere:
cuda_version: 11.8.0
cudnn_version: 8.6.0.163
description: Noise2Void_3D_DL4Mic is the conversion of the 3D Noise2Void from ZeroCostDL4Mic.
dl4miceverywhere_version: 2.1.0
docker_hub_image: noise2void_3d_zerocostdl4mic-z1.16.2-d2.1.0
notebook_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/Noise2Void_3D_ZeroCostDL4Mic.ipynb
notebook_version: 1.16.2
python_version: '3.10'
requirements_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/requirements_files/Noise2Void_3D_requirements_simple.txt
sections_to_remove: 1.1. 1.2. 2. 6.2.
ubuntu_version: '22.04'
- type: application
id: Notebook_CARE_2D_ZeroCostDL4Mic
name: CARE (2D) - ZeroCostDL4Mic
description: Supervised restoration of 2D images. CARE is a neural network capable of image restoration from corrupted bio-images, first published in 2018 by Weigert et al. in Nature Methods. The network allows image denoising and resolution improvement in 2D and 3D images, in a supervised training manner. The function of the network is essentially determined by the set of images provided in the training dataset. For instance, if noisy images are provided as input and high signal-to-noise ratio images are provided as targets, the network will perform denoising. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "Weigert, M., Schmidt, U., Boothe, T. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat Methods 15, 1090–1097 (2018). https://doi.org/10.1038/s41592-018-0216-7"
doi: https://doi.org/10.1038/s41592-018-0216-7
authors:
- Lucas von Chamier and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/CARE2D_notebook.png
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/CARE2D_notebook_2.png
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/CARE2D_notebook_3.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/CARE_2D_ZeroCostDL4Mic.ipynb
documentation: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/README.md
tags: [colab, notebook, CARE, denoising, ZeroCostDL4Mic, 2D, dl4miceverywhere]
download_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/CARE_2D_ZeroCostDL4Mic.ipynb
git_repo: /~https://github.com/HenriquesLab/ZeroCostDL4Mic
license: MIT
links:
- Notebook Preview
- Dataset_CARE_2D_ZeroCostDL4Mic
- Dataset_Noisy_Nuclei_ZeroCostDL4Mic
- Dataset_CARE_2D_coli_DeepBacs
- Dataset_fnet_DeepBacs
version: 1.15.2
config:
dl4miceverywhere:
cuda_version: 11.8.0
cudnn_version: 8.6.0.163
description: CARE_2D_DL4Mic is the conversion of the 2D CARE from ZeroCostDL4Mic.
dl4miceverywhere_version: 2.0.0
docker_hub_image: care_2d_zerocostdl4mic-z1.15.2-d2.0.0
notebook_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/CARE_2D_ZeroCostDL4Mic.ipynb
notebook_version: 1.15.2
python_version: '3.10'
requirements_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/requirements_files/CARE_2D_requirements_simple.txt
sections_to_remove: 1.1. 1.2. 2. 6.3.
ubuntu_version: '22.04'
- type: application
id: Notebook_CARE_3D_ZeroCostDL4Mic
name: CARE (3D) - ZeroCostDL4Mic
description: Supervised restoration of 3D images. CARE is a neural network capable of image restoration from corrupted bio-images, first published in 2018 by Weigert et al. in Nature Methods. The network allows image denoising and resolution improvement in 2D and 3D images, in a supervised training manner. The function of the network is essentially determined by the set of images provided in the training dataset. For instance, if noisy images are provided as input and high signal-to-noise ratio images are provided as targets, the network will perform denoising. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "Weigert, M., Schmidt, U., Boothe, T. et al. Content-aware image restoration: pushing the limits of fluorescence microscopy. Nat Methods 15, 1090–1097 (2018). https://doi.org/10.1038/s41592-018-0216-7"
doi: https://doi.org/10.1038/s41592-018-0216-7
authors:
- Lucas von Chamier and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/3D_CARE_notebook.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/CARE_3D_ZeroCostDL4Mic.ipynb
documentation: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/README.md
tags: [colab, notebook, CARE, denoising, ZeroCostDL4Mic, 3D, dl4miceverywhere]
download_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/CARE_3D_ZeroCostDL4Mic.ipynb
git_repo: /~https://github.com/HenriquesLab/ZeroCostDL4Mic
license: MIT
links:
- Notebook Preview
- Dataset_CARE_3D_ZeroCostDL4Mic
version: 1.15.3
config:
dl4miceverywhere:
cuda_version: 11.8.0
cudnn_version: 8.6.0.163
description: CARE_3D_DL4Mic is the conversion of the 3D CARE from ZeroCostDL4Mic.
dl4miceverywhere_version: 2.1.0
docker_hub_image: care_3d_zerocostdl4mic-z1.15.3-d2.1.0
notebook_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/CARE_3D_ZeroCostDL4Mic.ipynb
notebook_version: 1.15.3
python_version: '3.9'
requirements_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/requirements_files/CARE_3D_requirements_simple.txt
sections_to_remove: 1.1. 1.2. 2. 6.2.
ubuntu_version: '22.04'
- type: application
id: Notebook_fnet_3D_ZeroCostDL4Mic
name: Label-free Prediction - fnet - (3D) ZeroCostDL4Mic
description: Paired image-to-image translation of 3D images. Label-free Prediction (fnet) is a neural network used to infer the features of cellular structures from brightfield or EM images without coloured labels. The network is trained using paired training images from the same field of view, imaged in a label-free (e.g. brightfield) and labelled condition (e.g. fluorescent protein). When trained, this allows the user to identify certain structures from brightfield images alone. The performance of fnet may depend significantly on the structure at hand. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "Ounkomol, C., Seshamani, S., Maleckar, M.M. et al. Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nat Methods 15, 917–920 (2018). https://doi.org/10.1038/s41592-018-0111-2"
doi: https://doi.org/10.1038/s41592-018-0111-2
authors:
- Lucas von Chamier and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/fnet_notebook.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/fnet_3D_ZeroCostDL4Mic.ipynb
documentation: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/README.md
tags: [colab, notebook, fnet, labelling, ZeroCostDL4Mic, 3D, dl4miceverywhere]
download_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/fnet_3D_ZeroCostDL4Mic.ipynb
git_repo: /~https://github.com/HenriquesLab/ZeroCostDL4Mic
license: MIT
links:
- Notebook Preview
- Dataset_fnet_3D_ZeroCostDL4Mic
version: 1.13.1
config:
dl4miceverywhere:
cuda_version: 11.8.0
cudnn_version: 8.6.0.163
description: fnet_3D_DL4Mic is the conversion of the 3D fnet from ZeroCostDL4Mic.
dl4miceverywhere_version: 2.0.0
docker_hub_image: fnet_3d_zerocostdl4mic-z1.13.1-d2.0.0
notebook_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/fnet_3D_ZeroCostDL4Mic.ipynb
notebook_version: 1.13.1
python_version: '3.7'
requirements_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/requirements_files/fnet_3D_requirements_simple.txt
sections_to_remove: 1.1. 1.2. 2. 6.3.
ubuntu_version: '22.04'
- type: application
id: Notebook_fnet_2D_ZeroCostDL4Mic
name: Label-free Prediction - fnet - (2D) ZeroCostDL4Mic
description: Paired image-to-image translation of 2D images. Label-free Prediction (fnet) is a neural network used to infer the features of cellular structures from brightfield or EM images without coloured labels. The network is trained using paired training images from the same field of view, imaged in a label-free (e.g. brightfield) and labelled condition (e.g. fluorescent protein). When trained, this allows the user to identify certain structures from brightfield images alone. The performance of fnet may depend significantly on the structure at hand. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "Ounkomol, C., Seshamani, S., Maleckar, M.M. et al. Label-free prediction of three-dimensional fluorescence images from transmitted-light microscopy. Nat Methods 15, 917–920 (2018). https://doi.org/10.1038/s41592-018-0111-2"
doi: https://doi.org/10.1038/s41592-018-0111-2
authors:
- Lucas von Chamier and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/fnet_notebook.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/fnet_2D_ZeroCostDL4Mic.ipynb
documentation: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/README.md
tags: [colab, notebook, fnet, labelling, ZeroCostDL4Mic, 2D, dl4miceverywhere]
download_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/fnet_2D_ZeroCostDL4Mic.ipynb
git_repo: /~https://github.com/HenriquesLab/ZeroCostDL4Mic
license: MIT
links:
- Notebook Preview
- Dataset_fnet_DeepBacs
version: 1.14.1
config:
dl4miceverywhere:
cuda_version: 11.8.0
cudnn_version: 8.6.0.163
description: fnet_2D_DL4Mic is the conversion of the 2D fnet from ZeroCostDL4Mic.
dl4miceverywhere_version: 2.0.0
docker_hub_image: fnet_2d_zerocostdl4mic-z1.14.1-d2.0.0
notebook_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/fnet_2D_ZeroCostDL4Mic.ipynb
notebook_version: 1.14.1
python_version: '3.7'
requirements_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/requirements_files/fnet_2D_requirements_simple.txt
sections_to_remove: 1.1. 1.2. 2. 6.3.
ubuntu_version: '22.04'
- type: application
id: Notebook_Deep-STORM_2D_ZeroCostDL4Mic
name: Deep-STORM (2D) - ZeroCostDL4Mic
description: Single Molecule Localization Microscopy (SMLM) image reconstruction from high-density emitter data. Deep-STORM is a neural network capable of image reconstruction from high-density single-molecule localization microscopy (SMLM), first published in 2018 by Nehme et al. in Optica. This network allows image reconstruction of 2D super-resolution images, in a supervised training manner. The network is trained using simulated high-density SMLM data for which the ground-truth is available. These simulations are obtained from random distribution of single molecules in a field-of-view and therefore do not imprint structural priors during training. The network output a super-resolution image with increased pixel density (typically upsampling factor of 8 in each dimension). Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "Elias Nehme, Lucien E. Weiss, Tomer Michaeli, and Yoav Shechtman. Deep-STORM: super-resolution single-molecule microscopy by deep learning. Optica 5, 458-464 (2018)"
doi: https://doi.org/10.1364/OPTICA.5.000458
authors:
- Romain Laine and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/DeepSTORM_notebook.png
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/DeepSTORM_notebook_2.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/Deep-STORM_2D_ZeroCostDL4Mic.ipynb
documentation: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/README.md
tags: [colab, notebook, Deep-STORM, labelling, ZeroCostDL4Mic, 2D, dl4miceverywhere]
download_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/Deep-STORM_2D_ZeroCostDL4Mic.ipynb
git_repo: /~https://github.com/HenriquesLab/ZeroCostDL4Mic
license: MIT
links:
- Notebook Preview
- Dataset_Deep-STORM_ZeroCostDL4Mic
version: 1.13.3
config:
dl4miceverywhere:
cuda_version: 11.8.0
cudnn_version: 8.6.0.163
description: Deep-STORM_2D_DL4Mic is the conversion of the 2D Deep-STORM from ZeroCostDL4Mic.
dl4miceverywhere_version: 2.1.0
docker_hub_image: deep-storm_2d_zerocostdl4mic-z1.13.3-d2.1.0
notebook_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/Deep-STORM_2D_ZeroCostDL4Mic.ipynb
notebook_version: 1.13.3
python_version: '3.10'
requirements_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/requirements_files/DeepSTORM_requirements_simple.txt
sections_to_remove: 2. 6.4.
ubuntu_version: '22.04'
- type: application
id: Notebook_pix2pix_2D_ZeroCostDL4Mic
name: pix2pix (2D) - ZeroCostDL4Mic
description: Paired image-to-image translation of 2D images. pix2pix is a deep-learning method that can be used to translate one type of images into another. While pix2pix can potentially be used for any type of image-to-image translation, we demonstrate that it can be used to predict a fluorescent image from another fluorescent image. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, Alexei A. Efros. Image-to-Image Translation with Conditional Adversarial Networks. arXiv:1611.07004."
url: https://arxiv.org/abs/1611.07004
authors:
- Guillaume Jacquemet and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/pix2pix_notebook_2.png
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/pix2pix_notebook.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/pix2pix_ZeroCostDL4Mic.ipynb
documentation: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/README.md
tags: [colab, notebook, pix2pix, ZeroCostDL4Mic, 2D, dl4miceverywhere]
download_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/pix2pix_ZeroCostDL4Mic.ipynb
git_repo: /~https://github.com/HenriquesLab/ZeroCostDL4Mic
license: MIT
links:
- Notebook Preview
- Dataset_pix2pix_ZeroCostDL4Mic
version: 1.17.3
config:
dl4miceverywhere:
cuda_version: 11.8.0
cudnn_version: 8.6.0.163
description: pix2pix_DL4Mic is the conversion of the pix2pix from ZeroCostDL4Mic.
dl4miceverywhere_version: 2.1.0
docker_hub_image: pix2pix_zerocostdl4mic-z1.17.3-d2.1.0
notebook_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/pix2pix_ZeroCostDL4Mic.ipynb
notebook_version: 1.17.3
python_version: '3.8'
requirements_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/requirements_files/pix2pix_requirements_simple.txt
sections_to_remove: 2. 6.3.
ubuntu_version: '22.04'
- type: application
id: Notebook_CycleGAN_2D_ZeroCostDL4Mic
name: CycleGAN (2D) - ZeroCostDL4Mic
description: Unpaired image-to-image translation of 2D images. CycleGAN is a method that can capture the characteristics of one image domain and figure out how these characteristics could be translated into another image domain, all in the absence of any paired training examples (ie transform a horse into zebra or apples into oranges). While CycleGAN can potentially be used for any type of image-to-image translation, we illustrate that it can be used to predict what a fluorescent label would look like when imaged using another imaging modalities. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A. Efros. Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks. arXiv:1703.10593"
url: https://arxiv.org/abs/1703.10593
authors:
- Guillaume Jacquemet and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/cycleGAN_notebook.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Colab_notebooks/CycleGAN_ZeroCostDL4Mic.ipynb
documentation: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/README.md
tags: [colab, notebook, CycleGAN, ZeroCostDL4Mic, 2D, dl4miceverywhere]
download_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/CycleGAN_ZeroCostDL4Mic.ipynb
git_repo: /~https://github.com/HenriquesLab/ZeroCostDL4Mic
license: MIT
links:
- Notebook Preview
- Dataset_CycleGAN_ZeroCostDL4Mic
version: 1.13.3
config:
dl4miceverywhere:
cuda_version: 11.8.0
cudnn_version: 8.6.0.163
description: CycleGAN_DL4Mic is the conversion of the CycleGAN from ZeroCostDL4Mic.
dl4miceverywhere_version: 2.1.0
docker_hub_image: cyclegan_zerocostdl4mic-z1.13.3-d2.1.0
notebook_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/Colab_notebooks/CycleGAN_ZeroCostDL4Mic.ipynb
notebook_version: 1.13.3
python_version: '3.8'
requirements_url: https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/requirements_files/CycleGAN_requirements_simple.txt
sections_to_remove: 2. 6.3.
ubuntu_version: '22.04'
- type: application
id: Notebook_Augmentor_ZeroCostDL4Mic
name: Augmentor - ZeroCostDL4Mic
description: Artificially increase the size of your training dataset. Augmentor is a data augmentation library. Data augmentation can improve training progress by amplifying differences in the dataset. This can be useful if the available dataset is small since, in this case, it is possible that a network could quickly learn every example in the dataset (overfitting), without augmentation. Augmentation can be especially valuable when training dataset need to be manually labelled. Note - visit the ZeroCostDL4Mic wiki to check the original publications this network is based on and make sure you cite these.
cite:
- text: "von Chamier, L., Laine, R.F., Jukkala, J. et al. Democratising deep learning for microscopy with ZeroCostDL4Mic. Nat Commun 12, 2276 (2021). https://doi.org/10.1038/s41467-021-22518-0"
doi: https://doi.org/10.1038/s41467-021-22518-0
- text: "Marcus D Bloice, Peter M Roth, Andreas Holzinger, Biomedical image augmentation using Augmentor, Bioinformatics, Volume 35, Issue 21, 1 November 2019, Pages 4522–4524, https://doi.org/10.1093/bioinformatics/btz259"
doi: https://doi.org/10.1093/bioinformatics/btz259
authors:
- Guillaume Jacquemet and the ZeroCostDL4Mic Team
covers:
- https://raw.githubusercontent.com/HenriquesLab/ZeroCostDL4Mic/master/BioimageModelZoo/Images/augmentor_notebook.png
badges:
- label: Open in Colab
icon: https://colab.research.google.com/assets/colab-badge.svg
url: https://colab.research.google.com/github/HenriquesLab/ZeroCostDL4Mic/blob/master/Tools/Augmentor_ZeroCostDL4Mic.ipynb