-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_lmc_multiclass.py
292 lines (273 loc) · 17.4 KB
/
main_lmc_multiclass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from hmac import new
import time
import numpy as np
import argparse
import matplotlib.pyplot as plt
from tqdm import tqdm
import math
from scipy.optimize import minimize_scalar
import torch
import torch.nn.functional as F
from utils import load_features, generate_gaussian, create_nested_folder, transform_array
from langevin import unadjusted_langevin_algorithm_multiclass
class Runner():
def __init__(self, args):
self.device = torch.device('cuda:'+str(args.gpu) if torch.cuda.is_available() else 'cpu')
self.args = args
if args.dataset == 'CIFAR10_MULTI':
self.X_train, self.X_test, self.y_train, self.y_train_onehot, self.y_test = load_features(args)
self.dim_w = 512
self.num_class = 10
# make the norm of x = 1, MNIST naturally satisfys
self.X_train_norm = self.X_train.norm(dim=1, keepdim=True)
self.X_train = self.X_train / self.X_train_norm
self.X_test_norm = self.X_test.norm(dim=1, keepdim=True)
self.X_test = self.X_test / self.X_test_norm
self.X_train = self.X_train.to(self.device)
self.y_train = self.y_train.to(self.device)
def get_metadata(self):
# num of training data
self.n = len(self.X_train)
print('number training data:'+str(self.n))
# L-smoothness constant
self.L = 1 + self.args.lam * self.n
self.L = self.L
print('L smooth constant'+str(self.L))
# m-strongly convex constant
self.m = self.args.lam * self.n
self.m = self.m
print('m strongly convex:'+str(self.m))
# M-Lipschitz constant
self.M = 2
print('M lipschitz constant:'+str(self.M))
# calculate step size
self.eta = 1 / self.L
print('step size eta:'+str(self.eta))
# calculate RDP delta
self.delta = 1 / self.n
print('RDP constant delta:'+str(self.delta))
def train(self):
if self.args.search_burnin:
if self.args.dataset == 'CIFAR10_MULTI':
# list for MNIST
sigma_list = [0.015, 0.02, 0.03]
burn_in_list = [1, 10, 20, 50, 100, 150, 200, 300]
_ = self.search_burnin(sigma_list, burn_in_list)
elif self.args.paint_utility_s:
# this is to paint the utilisy - s figure
num_remove_list = [1, 10, 50, 100, 500, 1000] # the number of data to remove
create_nested_folder('./result/LMC/'+str(self.args.dataset)+'/paint_utility_s/')
accuracy_scratch_D, mean_time, w_list = self.get_mean_performance(self.X_train, self.y_train, self.args.burn_in, self.args.sigma, None, len_list = 1, return_w = True)
np.save('./result/LMC/'+str(self.args.dataset)+'/paint_utility_s/learn_scratch_w.npy', w_list)
np.save('./result/LMC/'+str(self.args.dataset)+'/paint_utility_s/acc_scratch_D.npy', accuracy_scratch_D)
# calculate K
epsilon_list = [0.5, 1, 2]
K_dict, _ = self.search_finetune_step(self.args.sigma, epsilon_list, num_remove_list)
for epsilon_idx, epsilon in enumerate(epsilon_list):
K_list = []
for num_remove in num_remove_list:
create_nested_folder('./result/LMC/'+str(self.args.dataset)+'/paint_utility_s/'+str(epsilon)+'/')
X_train_removed, y_train_removed = self.get_removed_data(num_remove)
accuracy_scratch_Dnew, mean_time = self.get_mean_performance(X_train_removed, y_train_removed, self.args.burn_in, self.args.sigma, None)
np.save('./result/LMC/'+str(self.args.dataset)+'/paint_utility_s/'+str(epsilon)+'/acc_scratch_Dnew_remove'+str(num_remove)+'.npy', accuracy_scratch_Dnew)
accuracy_finetune, mean_time = self.get_mean_performance(X_train_removed, y_train_removed, K_dict[num_remove][epsilon], self.args.sigma, w_list)
np.save('./result/LMC/'+str(self.args.dataset)+'/paint_utility_s/'+str(epsilon)+'/acc_finetune_remove'+str(num_remove)+'.npy', accuracy_finetune)
K_list.append(K_dict[num_remove][epsilon])
np.save('./result/LMC/'+str(self.args.dataset)+'/paint_utility_s/'+str(epsilon)+'/K_list.npy', K_list)
elif self.args.paint_utility_epsilon:
epsilon_list = [0.1, 0.5, 1, 2, 5]
num_remove_list = [1, 50, 100]
accuracy_scratch_D, mean_time, w_list = self.get_mean_performance(self.X_train, self.y_train, self.args.burn_in, self.args.sigma, None, len_list = 1, return_w = True)
np.save('./result/LMC/'+str(self.args.dataset)+'/paint_utility_epsilon/w_from_scratch.npy', w_list)
np.save('./result/LMC/'+str(self.args.dataset)+'/paint_utility_epsilon/acc_scratch_D.npy', accuracy_scratch_D)
# calculate K
K_dict, _ = self.search_finetune_step(self.args.sigma, epsilon_list, num_remove_list)
np.save('./result/LMC/'+str(self.args.dataset)+'/paint_utility_epsilon/K_list.npy', K_dict)
for remove_idx, num_remove in enumerate(num_remove_list):
K_list = []
for epsilon in epsilon_list:
X_train_removed, y_train_removed = self.get_removed_data(num_remove_list[remove_idx])
accuracy_finetune, mean_time = self.get_mean_performance(X_train_removed, y_train_removed, K_dict[num_remove_list[remove_idx]][epsilon], self.args.sigma, w_list)
create_nested_folder('./result/LMC/'+str(self.args.dataset)+'/paint_utility_epsilon/'+str(num_remove)+'/')
np.save('./result/LMC/'+str(self.args.dataset)+'/paint_utility_epsilon/'+str(num_remove)+'/acc_finetune_epsilon'+str(epsilon)+'.npy', accuracy_finetune)
K_list.append(K_dict[num_remove_list[0]][epsilon])
elif self.args.paint_unlearning_sigma:
num_remove_list = [100]
epsilon_list = [1]
#sigma_list = [0.05, 0.1, 0.2, 0.5, 1]
sigma_list = [0.01]
scratch_acc_list = []
scratch_unlearn_list = []
finetune_unlearn_list = []
epsilon0_list = []
X_train_removed, y_train_removed = self.get_removed_data(num_remove_list[0])
create_nested_folder('./result/LMC/'+str(self.args.dataset)+'/paint_unlearning_sigma/')
for sigma in sigma_list:
K_dict, alpha_dict = self.search_finetune_step(sigma, epsilon_list, num_remove_list)
np.save('./result/LMC/'+str(self.args.dataset)+'/paint_unlearning_sigma/K_dict'+str(sigma)+'.npy', K_dict)
np.save('./result/LMC/'+str(self.args.dataset)+'/paint_unlearning_sigma/alpha_dict'+str(sigma)+'.npy', alpha_dict)
alpha = alpha_dict[num_remove_list[0]][epsilon_list[0]]
DP_epsilon0_expression = lambda alpha_: self.calculate_epsilon0(alpha_, num_remove_list[0], sigma) + math.log(float(1/self.delta)) / (alpha_ - 1)
DP_epsilon0 = minimize_scalar(DP_epsilon0_expression, bounds=(1, 10000), method='bounded')
#epsilon0 = self.calculate_epsilon0(alpha, num_remove_list[0], sigma)
epsilon0_list.append(DP_epsilon0.fun)
accuracy_scratch_D, mean_time, w_list = self.get_mean_performance(self.X_train, self.y_train, self.args.burn_in, sigma, None, len_list = 1, return_w = True)
np.save('./result/LMC/'+str(self.args.dataset)+'/paint_unlearning_sigma/'+str(sigma)+'_learn_scratch_w.npy', w_list)
np.save('./result/LMC/'+str(self.args.dataset)+'/paint_unlearning_sigma/'+str(sigma)+'_acc_scratch_D.npy', accuracy_scratch_D)
accuracy_scratch_Dnew, mean_time, unlearn_w_list = self.get_mean_performance(X_train_removed, y_train_removed, self.args.burn_in, sigma, None, return_w=True)
np.save('./result/LMC/'+str(self.args.dataset)+'/paint_unlearning_sigma/'+str(sigma)+'_unlearn_scratch_w.npy', unlearn_w_list)
np.save('./result/LMC/'+str(self.args.dataset)+'/paint_unlearning_sigma/'+str(sigma)+'_acc_scratch_Dnew.npy', accuracy_scratch_Dnew)
accuracy_finetune, mean_time = self.get_mean_performance(X_train_removed, y_train_removed, K_dict[num_remove_list[0]][1], sigma, w_list)
np.save('./result/LMC/'+str(self.args.dataset)+'/paint_unlearning_sigma/'+str(sigma)+'_acc_finetune.npy', accuracy_finetune)
#np.save('./result/LMC/'+str(self.args.dataset)+'/paint_unlearning_sigma/epsilon0.npy', epsilon0_list)
print(epsilon0_list)
elif self.args.retrain_noiseless == 1:
num_remove_list = [1, 10, 50, 100, 500, 1000] # the number of data to remove
for num_remove in num_remove_list:
create_nested_folder('./result/LMC/'+str(self.args.dataset)+'/retrain_noiseless/')
X_train_removed, y_train_removed = self.get_removed_data(num_remove)
accuracy_scratch_Dnew, mean_time = self.get_mean_performance(X_train_removed, y_train_removed, self.args.burn_in, 0, None)
np.save('./result/LMC/'+str(self.args.dataset)+'/retrain_noiseless/retrain_noiseless'+str(num_remove)+'.npy', accuracy_scratch_Dnew)
else:
print('check!')
def get_removed_data(self, num_remove):
X_train_removed = self.X_train[:-num_remove,:]
y_train_removed = self.y_train[:-num_remove]
new_X_train = torch.randn(num_remove, self.dim_w)
norms = new_X_train.norm(dim=1, keepdim=True)
new_X_train = new_X_train / norms
new_X_train = new_X_train.to(self.device)
new_y_train = torch.randint(0, 10, (1, num_remove)).reshape(-1)
new_y_train = transform_array(new_y_train)
new_y_train = new_y_train.to(self.device)
X_train_removed = torch.cat((X_train_removed, new_X_train), 0)
y_train_removed = torch.cat((y_train_removed, new_y_train), 0)
return X_train_removed, y_train_removed
def search_burnin(self, sigma_list, burn_in_list, fig_path = '_search_burnin.pdf'):
acc_dict = {}
for sigma in sigma_list:
acc_list = []
this_w_list = None
for idx in range(len(burn_in_list)):
if idx == 0:
step = burn_in_list[idx]
else:
step = burn_in_list[idx] - burn_in_list[idx - 1]
accuracy, _, new_w_list = self.get_mean_performance(self.X_train, self.y_train, step, sigma, this_w_list, return_w = True)
this_w_list = new_w_list
acc_list.append(np.mean(accuracy))
print(acc_list)
plt.plot(burn_in_list, acc_list, label='sigma :'+str(sigma))
acc_dict[sigma] = acc_list
for i in range(len(burn_in_list)):
plt.text(burn_in_list[i], acc_list[i], f'{acc_list[i]:.3f}', ha='right', va='bottom')
plt.legend()
plt.title(str(self.args.dataset)+'search burn in')
plt.xlabel('burn in steps')
plt.ylabel('accuracy')
plt.savefig(str(self.args.dataset)+fig_path)
plt.clf()
return acc_dict
def epsilon_expression(self, K, sigma, eta, C_lsi, alpha, S, M, m, n, delta):
part_1 = math.exp(- (float(K) * m * float(eta)) / (alpha))
part_2 = (4 * alpha * float(S)**2 * float(M)**2) / (float(m) * float(sigma)**2 * float(n)**2)
part_3 = (math.log(1 / float(delta))) / (alpha - 1)
epsilon = part_1 * part_2 + part_3
return epsilon
def search_finetune_step(self, sigma, epsilon_list, num_remove_list):
C_lsi = 2 * self.args.sigma**2 / self.m
K_dict = {}
alpha_dict = {}
for num_remove in num_remove_list:
K_list = {}
alpha_list = {}
for target_epsilon in epsilon_list:
K = 1
epsilon_of_alpha = lambda alpha: self.epsilon_expression(K, sigma, self.eta, C_lsi, alpha, num_remove, self.M, self.m, self.n, self.delta)
min_epsilon_with_k = minimize_scalar(epsilon_of_alpha, bounds=(1, 10000), method='bounded')
while min_epsilon_with_k.fun > target_epsilon:
K = K + 10
epsilon_of_alpha = lambda alpha: self.epsilon_expression(K, sigma, self.eta, C_lsi, alpha, num_remove, self.M, self.m, self.n, self.delta)
min_epsilon_with_k = minimize_scalar(epsilon_of_alpha, bounds=(1, 10000), method='bounded')
K_list[target_epsilon] = K
alpha_list[target_epsilon] = min_epsilon_with_k.x
print('num remove:'+str(num_remove)+'target epsilon: '+str(target_epsilon)+'K: '+str(K)+'alpha: '+str(min_epsilon_with_k.x))
K_dict[num_remove] = K_list
alpha_dict[num_remove] = alpha_list
return K_dict, alpha_dict
def calculate_epsilon0(self, alpha, S, sigma):
return (4 * alpha * float(S)**2 * float(self.M)**2) / (float(self.m) * float(sigma)**2 * float(self.n)**2)
def get_mean_performance(self, X, y, step, sigma, w_list, len_list = 1, return_w = False, num_trial = 100):
new_w_list = []
trial_list = []
time_list = []
if w_list is None:
for trial_idx in tqdm(range(num_trial)):
w_init, time = self.run_unadjusted_langvin_multiclass(None, X, y, step, sigma, len_list)
time_list.append(time)
w_init = np.vstack(w_init)
new_w_list.append(w_init)
accuracy = self.test_accuracy(w_init)
trial_list.append(accuracy)
else:
for trial_idx in tqdm(range(num_trial)):
w = w_list[trial_idx]
w = torch.tensor(w)
new_w, time = self.run_unadjusted_langvin_multiclass(w, X, y, step, sigma, len_list = 1)
time_list.append(time)
new_w = np.vstack(new_w)
new_w_list.append(new_w)
accuracy = self.test_accuracy(new_w)
trial_list.append(accuracy)
mean_time = np.mean(time_list)
if return_w:
new_w_list = np.stack(new_w_list, axis=0)
return trial_list, mean_time, new_w_list
else:
return trial_list, mean_time
def test_accuracy(self, w_list):
w = torch.tensor(w_list)
# test accuracy (before removal)
pred = self.X_test.matmul(w)
score = F.softmax(pred, dim = -1)
_, pred_class = score.max(dim = 1)
_, label = self.y_test.max(dim = 1)
correct_predictions = (pred_class == label).sum().item()
accuracy = correct_predictions / score.shape[0]
return accuracy
def run_unadjusted_langvin_multiclass(self, init_point, X, y, burn_in, sigma, len_list, projection = 0, batch_size = 0):
start_time = time.time()
w_list = unadjusted_langevin_algorithm_multiclass(init_point, self.dim_w, X, y, self.args.lam*self.n, sigma = sigma,
device = self.device, num_class = self.num_class, burn_in = burn_in,
len_list = len_list, step=self.eta, M = self.M, m = self.m)
end_time = time.time()
return w_list, end_time - start_time
def main():
parser = argparse.ArgumentParser(description='Training a removal-enabled linear model and testing removal')
parser.add_argument('--data-dir', type=str, default='./data', help='data directory')
parser.add_argument('--result-dir', type=str, default='./result', help='directory for saving results')
parser.add_argument('--dataset', type=str, default='MNIST', help='[MNIST, 2dgaussian, kdgaussian]')
parser.add_argument('--extractor', type=str, default='raw_feature', help='extractor type')
parser.add_argument('--lam', type=float, default=1e-6, help='L2 regularization')
parser.add_argument('--num-removes', type=int, default=1000, help='number of data points to remove')
parser.add_argument('--num-steps', type=int, default=10000, help='number of optimization steps')
parser.add_argument('--train-mode', type=str, default='multi', help='train mode [ovr/binary]')
parser.add_argument('--M', type = float, default = 1, help = 'set M-Lipschitz constant (norm of gradient)')
parser.add_argument('--gpu', type = int, default = 6, help = 'gpu')
parser.add_argument('--sigma', type = float, default = 0.03, help = 'the parameter sigma')
parser.add_argument('--burn_in', type = int, default = 10000, help = 'burn in step number of LMC')
parser.add_argument('--gaussian_dim', type = int, default = 10, help = 'dimension of gaussian task')
parser.add_argument('--len_list', type = int, default = 10000, help = 'length of w to paint in 2D gaussian')
parser.add_argument('--finetune_step', type = int, default = 50, help = 'steps to finetune on the new removed data')
parser.add_argument('--search_burnin', type = int, default = 0, help = 'search burn in steps')
parser.add_argument('--paint_utility_s', type = int, default = 0, help = 'paint the utility - s figure')
parser.add_argument('--paint_utility_epsilon', type = int, default = 0, help = 'paint utility - epsilon figure')
parser.add_argument('--paint_unlearning_sigma', type = int, default = 0, help = 'paint unlearning utility - sigma figure')
parser.add_argument('--retrain_noiseless', type = int, default = 0, help = 'get the noiseless retrain result')
args = parser.parse_args()
print(args)
runner = Runner(args)
runner.get_metadata()
runner.train()
if __name__ == '__main__':
main()