-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbaseline_multiclass.py
507 lines (463 loc) · 29.4 KB
/
baseline_multiclass.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
from hmac import new
import time
import numpy as np
import argparse
from tqdm import tqdm
import math
from scipy.optimize import minimize_scalar
import torch
import torch.nn.functional as F
from utils import load_features, create_nested_folder, transform_array
from langevin import unadjusted_langevin_algorithm_multiclass
class Runner():
def __init__(self, args):
self.device = torch.device('cuda:'+str(args.gpu) if torch.cuda.is_available() else 'cpu')
self.args = args
if args.dataset == 'CIFAR10_MULTI':
self.X_train, self.X_test, self.y_train, self.y_train_onehot, self.y_test = load_features(args)
self.dim_w = 512
self.num_class = 10
# make the norm of x = 1, MNIST naturally satisfys
self.X_train_norm = self.X_train.norm(dim=1, keepdim=True)
self.X_train = self.X_train / self.X_train_norm
self.X_test_norm = self.X_test.norm(dim=1, keepdim=True)
self.X_test = self.X_test / self.X_test_norm
self.X_train = self.X_train.to(self.device)
self.y_train = self.y_train.to(self.device)
def get_metadata(self):
# num of training data
self.n = len(self.X_train)
print('number training data:'+str(self.n))
# L-smoothness constant
self.L = 1 + self.args.lam * self.n
self.L = self.L
print('L smooth constant'+str(self.L))
# m-strongly convex constant
self.m = self.args.lam * self.n
self.m = self.m
print('m strongly convex:'+str(self.m))
# M-Lipschitz constant
self.M = 2
print('M lipschitz constant:'+str(self.M))
# calculate step size
self.eta = 1 / self.L
print('step size eta:'+str(self.eta))
# calculate RDP delta
self.delta = 1 / self.n
print('RDP constant delta:'+str(self.delta))
def get_baseline_term2(self, i):
gamma = (self.L - self.m) / (self.L + self.m)
term2 = math.log(math.log((4 * self.dim_w * i) / self.delta)) / (math.log(1 / gamma))
return math.ceil(term2)
def get_baseline_min_I(self, target_epsilon):
gamma = (self.L - self.m) / (self.L + self.m)
part_1 = math.sqrt(2 * self.dim_w) * (1-gamma)**(-1)
part_2 = math.sqrt(2 * math.log(2 / self.delta) + target_epsilon) - math.sqrt(2 * math.log(2 / self.delta))
numerator = math.log(part_1 / part_2)
dominator = math.log( 1 / gamma)
return math.ceil(numerator / dominator)
def calculate_baseline_sigma2(self, I, epsilon):
gamma = (self.L - self.m) / (self.L + self.m)
numerator = 8 * self.M * gamma**I
part_1 = self.m * self.n * (1 - gamma**I)
part_2 = math.sqrt(2 * math.log(2 / self.delta) + 3 * epsilon) - math.sqrt(2 * math.log(2 / self.delta) + 2 * epsilon)
dominator = part_1 * part_2
return numerator / dominator
def epsilon0_(self, alpha, S, sigma):
epsilon0 = (4 * alpha * float(S)**2 * float(self.M)**2) / (float(self.m) * float(sigma)**2 * float(self.n)**2)
return epsilon0
def epsilon_s1(self, alpha, k, S, sigma):
return math.exp(- (1/alpha) * self.eta * self.m * k) * (self.epsilon0_(alpha, S, sigma))
def epsilon_s_with_alpha(self, alpha, S, sigma, step):
# every time call this function, the k_list[step - 1], step > 1 must be greater than 0
if step == 1:
# the first step
return math.exp(- (1/alpha) * self.eta * self.m * self.k_list[1]) * (self.epsilon0_(alpha, S, sigma))
else:
part1 = math.exp(- (1/alpha) * self.eta * self.m * self.k_list[step])
step = step - 1
part2 = (alpha - 0.5) / (alpha - 1) * (self.epsilon0_(2*alpha, S, sigma) + self.epsilon_s_with_alpha(2*alpha, S, sigma, step))
return part1 * part2
def train(self):
if self.args.run_baseline:
epsilon_list = [0.05, 0.1, 0.5, 1, 2, 5]
target_k_list = [1, 2, 5]
baseline_step_size = 2 / (self.L + self.m)
X_train_removed, y_train_removed = self.get_removed_data(1)
create_nested_folder('./result/LMC/'+str(self.args.dataset)+'/baseline/')
baseline_learn_scratch_acc, mean_time, baseline_w_list = self.get_mean_baseline(self.X_train, self.y_train, baseline_step_size, self.args.burn_in, None, len_list = 1, return_w = True)
np.save('./result/LMC/'+str(self.args.dataset)+'/baseline/baseline_acc_scratch.npy', baseline_learn_scratch_acc)
print('baseline learn scratch acc: ' + str(np.mean(baseline_learn_scratch_acc)))
print('baseline learn scratch acc std: ' + str(np.std(baseline_learn_scratch_acc)))
baseline_unlearn_scratch_acc, mean_time = self.get_mean_baseline(X_train_removed, y_train_removed, baseline_step_size, self.args.burn_in, None, len_list = 1)
np.save('./result/LMC/'+str(self.args.dataset)+'/baseline/baseline_acc_unlearn_scratch.npy', baseline_learn_scratch_acc)
print('baseline unlearn scratch acc: ' + str(np.mean(baseline_unlearn_scratch_acc)))
print('baseline unlearn scratch acc std: ' + str(np.std(baseline_unlearn_scratch_acc)))
for target_k in target_k_list:
print('working on target k:'+str(target_k))
# first run algorithm #1 to learn and get parameters
_, mean_time, w_list_new = self.get_mean_baseline(X_train_removed, y_train_removed, baseline_step_size, target_k, baseline_w_list, len_list = 1, return_w = True)
create_nested_folder('./result/LMC/'+str(self.args.dataset)+'/baseline/'+str(target_k)+'/')
for epsilon in epsilon_list:
baseline_sigma = self.calculate_baseline_sigma(target_k, epsilon = epsilon)
print('baseline sigma: ' + str(baseline_sigma))
random_noise = np.random.normal(0, baseline_sigma, (100, self.dim_w, self.num_class))
w_list_new_totest = torch.tensor(w_list_new + random_noise).float()
baseline_unlearn_finetune_acc_list = []
for i in range(100):
accuracy = self.test_accuracy(w_list_new_totest[i])
baseline_unlearn_finetune_acc_list.append(accuracy)
print('baseline unlearn finetune acc: ' + str(np.mean(baseline_unlearn_finetune_acc_list)))
print('baseline unlearn finetune acc std: ' + str(np.std(baseline_unlearn_finetune_acc_list)))
np.save('./result/LMC/'+str(self.args.dataset)+'/baseline/'+str(target_k)+'/baseline_acc_unlearn_finetune'+str(epsilon)+'.npy', baseline_unlearn_finetune_acc_list)
# run langevin unlearning
num_remove_list = [1]
if target_k == 1:
if self.args.dataset == 'CIFAR10_MULTI':
sigma_list = [0.0473, 0.0238, 0.0049, 0.0025, 0.00125, 0.00052]
elif target_k == 2:
if self.args.dataset == 'CIFAR10_MULTI':
sigma_list = [0.04712375541687011, 0.023586332015991213, 0.004756851043701172, 0.0024040242004394526, 0.0012253220367431641, 0.0005158119964599609]
elif target_k == 5:
if self.args.dataset == 'CIFAR10_MULTI':
sigma_list = [0.047116889190673826, 0.023579465789794925, 0.004749984817504882, 0.002394869232177734, 0.001218455810546875, 0.0005112345123291015]
else:
# for unseen target k, search it here
sigma_list = []
for epsilon in epsilon_list:
sigma_list.append(self.search_k(target_k, epsilon))
print(sigma_list)
lmc_learn_noiseless_acc, _ = self.get_mean_performance(self.X_train, self.y_train, self.args.burn_in, 0, None, len_list = 1, return_w = False)
print('LMc learn noiseless acc: ' + str(np.mean(lmc_learn_noiseless_acc)))
print('LMc learn noiseless acc std: ' + str(np.std(lmc_learn_noiseless_acc)))
np.save('./result/LMC/'+str(self.args.dataset)+'/baseline/'+str(target_k)+'/lmc_acc_noiseless.npy', lmc_learn_noiseless_acc)
for epsilon, sigma in zip(epsilon_list, sigma_list):
print('epsilon: ' + str(epsilon))
self.args.sigma = sigma
K_dict, _ = self.search_finetune_step(epsilon_list, num_remove_list, self.args.sigma)
lmc_learn_scratch_acc, mean_time, lmc_w_list = self.get_mean_performance(self.X_train, self.y_train, self.args.burn_in, self.args.sigma, None, len_list = 1, return_w = True)
print('LMc learn scratch acc: ' + str(np.mean(lmc_learn_scratch_acc)))
print('LMc learn scratch acc std: ' + str(np.std(lmc_learn_scratch_acc)))
np.save('./result/LMC/'+str(self.args.dataset)+'/baseline/'+str(target_k)+'/lmc_acc_learn_scratch'+str(epsilon)+'.npy', lmc_learn_scratch_acc)
lmc_unlearn_scratch_acc, mean_time = self.get_mean_performance(X_train_removed, y_train_removed, self.args.burn_in, self.args.sigma, None, len_list = 1)
print('LMc unlearn scratch acc: ' + str(np.mean(lmc_unlearn_scratch_acc)))
print('LMc unlearn scratch acc std: ' + str(np.std(lmc_unlearn_scratch_acc)))
np.save('./result/LMC/'+str(self.args.dataset)+'/baseline/'+str(target_k)+'/lmc_acc_unlearn_scratch'+str(epsilon)+'.npy', lmc_unlearn_scratch_acc)
lmc_unlearn_finetune_acc, mean_time = self.get_mean_performance(X_train_removed, y_train_removed, int(K_dict[num_remove_list[0]][epsilon]), self.args.sigma, lmc_w_list, len_list = 1)
print('LMc unlearn finetune acc: ' + str(np.mean(lmc_unlearn_finetune_acc)))
print('LMc unlearn finetune acc std: ' + str(np.std(lmc_unlearn_finetune_acc)))
np.save('./result/LMC/'+str(self.args.dataset)+'/baseline/'+str(target_k)+'/lmc_acc_unlearn_finetune'+str(epsilon)+'.npy', lmc_unlearn_finetune_acc)
import pdb; pdb.set_trace()
def sequential2(self):
num_remove_list = [100]
num_remove_per_itr_list = [5, 10, 20]
target_epsilon = 1
create_nested_folder('./result/LMC/'+str(self.args.dataset)+'/sequential2/')
baseline_step_size = 2 / (self.L + self.m)
baseline_I_factor_list = [1, 1.5, 2]
for baseline_I_factor in baseline_I_factor_list:
# first run the baseline, sequentially delete
'''baseline_learn_scratch_acc, mean_time, baseline_w_list = self.get_mean_baseline(self.X_train, self.y_train, baseline_step_size, self.args.burn_in, None, len_list = 1, return_w = True)
np.save('./result/LMC/'+str(self.args.dataset)+'/sequential2/baseline_acc_scratch'+str(baseline_I_factor)+'.npy', baseline_learn_scratch_acc)
print('baseline learn scratch acc: ' + str(np.mean(baseline_learn_scratch_acc)))
print('baseline learn scratch acc std: ' + str(np.std(baseline_learn_scratch_acc)))'''
min_I = self.get_baseline_min_I(target_epsilon)
print('min I:'+str(min_I))
term1 = int(min_I * baseline_I_factor)
baseline_k_list = []
for baseline_step in range(1, num_remove_list[0]+1):
X_train_removed, y_train_removed = self.get_removed_data(int((baseline_step)))
term2 = self.get_baseline_term2(baseline_step)
baseline_k = term1 + term2
baseline_k_list.append(baseline_k)
print('step:'+str(baseline_step)+'k:'+str(baseline_k))
#_, mean_time, baseline_w_list = self.get_mean_baseline(X_train_removed, y_train_removed, baseline_step_size, baseline_k, baseline_w_list, len_list = 1, return_w = True)
baseline_sigma = self.calculate_baseline_sigma2(baseline_k, epsilon = target_epsilon)
print('baseline sigma: ' + str(baseline_sigma))
'''random_noise = np.random.normal(0, baseline_sigma, (100, 1, self.dim_w))
baseline_w_list = torch.tensor(baseline_w_list + random_noise).float()
baseline_unlearn_finetune_acc_list = []
for i in range(100):
accuracy = self.test_accuracy(baseline_w_list[i])
baseline_unlearn_finetune_acc_list.append(accuracy)
print('baseline step:'+str(baseline_step)+'acc:'+str(np.mean(baseline_unlearn_finetune_acc_list)))
np.save('./result/LMC/'+str(self.args.dataset)+'/sequential2/baseline_acc_Ifac_'+str(baseline_I_factor)+'_step_'+str(baseline_step)+'.npy', baseline_unlearn_finetune_acc_list)'''
np.save('./result/LMC/'+str(self.args.dataset)+'/sequential2/baseline_k_Ifac_'+str(baseline_I_factor)+'.npy', baseline_k_list)
print('baseline k:'+str(baseline_k_list))
this_sigma = 0.03
for num_remove_per_itr in num_remove_per_itr_list:
'''lmc_learn_scratch_acc, mean_time, lmc_w_list = self.get_mean_performance(self.X_train, self.y_train, self.args.burn_in, this_sigma, None, len_list = 1, return_w = True)
print('LMc learn scratch acc: ' + str(np.mean(lmc_learn_scratch_acc)))
print('LMc learn scratch acc std: ' + str(np.std(lmc_learn_scratch_acc)))
np.save('./result/LMC/'+str(self.args.dataset)+'/sequential2/lmc_acc_scratch'+str(num_remove_per_itr)+'.npy', lmc_learn_scratch_acc)'''
num_step = int(num_remove_list[0]/num_remove_per_itr)
alpha_list = []
self.k_list = np.zeros(num_step+1).astype(int)
# first get k for step 1 as warm start
k_1 = 1
epsilon_of_s1 = lambda alpha: self.epsilon_s1(alpha, k_1, num_remove_per_itr, this_sigma) + (math.log(1 / float(self.delta))) / (alpha - 1)
min_epsilon_s1_k1 = minimize_scalar(epsilon_of_s1, bounds=(2, 100000), method='bounded')
while min_epsilon_s1_k1.fun > target_epsilon:
k_1 = k_1 + 1
epsilon_of_s1 = lambda alpha: self.epsilon_s1(alpha, k_1, num_remove_per_itr, this_sigma) + (math.log(1 / float(self.delta))) / (alpha - 1)
min_epsilon_s1_k1 = minimize_scalar(epsilon_of_s1, bounds=(2, 100000), method='bounded')
# set k_1 in the list
self.k_list[1] = k_1
alpha_list.append(min_epsilon_s1_k1.x)
if num_step > 1:
for step in tqdm(range(2,num_step+1)):
# here step start from 1. k_list[0] = 0 always
self.k_list[step] = 1
epsilon_of_sstep = lambda alpha: self.epsilon_s_with_alpha(alpha, num_remove_per_itr, this_sigma, step) + (math.log(1 / float(self.delta))) / (alpha - 1)
min_epsilon_sstep_kstep = minimize_scalar(epsilon_of_sstep, bounds=(2, 100000), method='bounded')
while min_epsilon_sstep_kstep.fun > target_epsilon:
self.k_list[step] = self.k_list[step] + 1
epsilon_of_sstep = lambda alpha: self.epsilon_s_with_alpha(alpha, num_remove_per_itr, this_sigma, step) + (math.log(1 / float(self.delta))) / (alpha - 1)
min_epsilon_sstep_kstep = minimize_scalar(epsilon_of_sstep, bounds=(2, 100000), method='bounded')
np.save('./result/LMC/'+str(self.args.dataset)+'/sequential2/'+'k_list_nr'+str(num_remove_per_itr)+'.npy', self.k_list)
print('lmc nr:'+str(num_remove_per_itr)+'k_list:'+str(self.k_list))
# accumulate k
accumulate_k = np.cumsum(self.k_list)
print(accumulate_k)
'''for lmc_step, lmc_k in enumerate(self.k_list):
X_train_removed, y_train_removed = self.get_removed_data(int((lmc_step+1)*num_remove_per_itr))
lmc_unlearn_finetune_acc, mean_time, lmc_w_list = self.get_mean_performance(X_train_removed, y_train_removed, lmc_k, this_sigma, lmc_w_list, len_list = 1, return_w = True)
print('LMc unlearn finetune acc: ' + str(np.mean(lmc_unlearn_finetune_acc)))
print('LMc unlearn finetune acc std: ' + str(np.std(lmc_unlearn_finetune_acc)))
np.save('./result/LMC/'+str(self.args.dataset)+'/sequential2/lmc_acc_finetune_nr'+str(num_remove_per_itr)+'_step'+str(lmc_step)+'.npy', lmc_unlearn_finetune_acc)'''
def search_k(self, target, epsilon, lower = 1e-5, upper = 0.30):
if self.calculate_k_with_sigma(epsilon, lower) < target or self.calculate_k_with_sigma(epsilon, upper) > target:
print('not good upper lowers')
return
while lower <= upper:
mid = (lower + upper) / 2
k = self.calculate_k_with_sigma(epsilon, mid)
if k == target:
print('find sigma for '+str(epsilon)+'k '+str(target))
print(mid)
return mid
elif k < target:
upper = mid
else:
lower = mid
def calculate_k_with_sigma(self, epsilon, sigma):
num_remove_list = [1]
epsilon_list = [epsilon]
K_dict, _ = self.search_finetune_step(epsilon_list, num_remove_list, sigma)
return(K_dict[1][epsilon])
def get_mean_baseline(self, X, y, baseline_step_size, step, w_list, len_list = 1, return_w = False, num_trial = 100):
new_w_list = []
trial_list = []
time_list = []
if w_list is None:
for trial_idx in tqdm(range(num_trial)):
w_init, time = self.run_gradient_descent(None, X, y, baseline_step_size, step, len_list)
time_list.append(time)
w_init = np.vstack(w_init)
new_w_list.append(w_init)
accuracy = self.test_accuracy(w_init)
trial_list.append(accuracy)
else:
for trial_idx in tqdm(range(num_trial)):
w = w_list[trial_idx]
w = torch.tensor(w)
new_w, time = self.run_gradient_descent(w, X, y, baseline_step_size, step, len_list = 1)
time_list.append(time)
new_w = np.vstack(new_w)
new_w_list.append(new_w)
accuracy = self.test_accuracy(new_w)
trial_list.append(accuracy)
#avg_accuracy = np.mean(trial_list)
mean_time = np.mean(time_list)
if return_w:
new_w_list = np.stack(new_w_list, axis=0)
return trial_list, mean_time, new_w_list
else:
return trial_list, mean_time
def get_mean_performance(self, X, y, step, sigma, w_list, len_list = 1, return_w = False, num_trial = 100):
new_w_list = []
trial_list = []
time_list = []
if w_list is None:
for trial_idx in tqdm(range(num_trial)):
w_init, time = self.run_unadjusted_langvin_multiclass(None, X, y, step, sigma, len_list)
time_list.append(time)
w_init = np.vstack(w_init)
new_w_list.append(w_init)
accuracy = self.test_accuracy(w_init)
trial_list.append(accuracy)
else:
for trial_idx in tqdm(range(num_trial)):
w = w_list[trial_idx]
w = torch.tensor(w)
new_w, time = self.run_unadjusted_langvin_multiclass(w, X, y, step, sigma, len_list = 1)
time_list.append(time)
new_w = np.vstack(new_w)
new_w_list.append(new_w)
accuracy = self.test_accuracy(new_w)
trial_list.append(accuracy)
#avg_accuracy = np.mean(trial_list)
mean_time = np.mean(time_list)
if return_w:
new_w_list = np.stack(new_w_list, axis=0)
return trial_list, mean_time, new_w_list
else:
return trial_list, mean_time
def run_gradient_descent(self, init_point, X, y, baseline_step_size, burn_in, len_list):
start_time = time.time()
w_list = self.gradient_descent_algorithm(init_point, self.dim_w, X, y, self.args.lam*self.n, device = self.device, burn_in = burn_in, len_list = len_list, step=baseline_step_size, M = self.M)
end_time = time.time()
return w_list, end_time - start_time
def gradient_descent_algorithm(self, init_point, dim_w, X, y, lam, device, burn_in = 10000, len_list = 1, step=0.1, M = 1):
# randomly sample from N(0, I)
if init_point == None:
#w0 = torch.randn(dim_w).to(device)
w0 = torch.normal(mean=1000, std=1, size=(dim_w, self.num_class)).to(device)
else:
w0 = init_point.to(device)
wi = w0
samples = []
for i in range(len_list + burn_in):
pre_log_softmax = torch.matmul(X, wi)
pred_log = F.softmax(pre_log_softmax, dim = -1)
per_sample_grad=torch.bmm(X.unsqueeze(-1), (pred_log - y).unsqueeze(1))
row_norms = torch.norm(per_sample_grad,dim=(1, 2))
clipped_grad = (per_sample_grad / row_norms.unsqueeze(-1).unsqueeze(-1)) * M
clipped_grad[row_norms <= M] = per_sample_grad[row_norms <= M]
grad_1 = clipped_grad.mean(0)
grad_2 = lam * wi
wi = wi.detach() - step * (grad_1 + grad_2)
#w_norm = torch.norm(wi)
#wi = wi / w_norm
samples.append(wi.detach().cpu().numpy())
return samples[burn_in:]
def get_removed_data(self, num_remove):
X_train_removed = self.X_train[:-num_remove,:]
y_train_removed = self.y_train[:-num_remove]
new_X_train = torch.randn(num_remove, self.dim_w)
norms = new_X_train.norm(dim=1, keepdim=True)
new_X_train = new_X_train / norms
new_X_train = new_X_train.to(self.device)
new_y_train = torch.randint(0, 10, (1, num_remove)).reshape(-1)
new_y_train = transform_array(new_y_train)
new_y_train = new_y_train.to(self.device)
X_train_removed = torch.cat((X_train_removed, new_X_train), 0)
y_train_removed = torch.cat((y_train_removed, new_y_train), 0)
return X_train_removed, y_train_removed
def calculate_baseline_sigma(self, I, epsilon = 1):
# calculate the noise for descent to delete
gamma = (self.L - self.m) / (self.L + self.m)
numerator = 4 * math.sqrt(2) * self.M * gamma**I
dominator = self.m * self.n * (1 - gamma**I) * (math.sqrt(math.log(1 / self.delta) + epsilon) - math.sqrt(math.log(1 / self.delta)))
return numerator / dominator
def epsilon_expression(self, K, sigma, eta, C_lsi, alpha, S, M, m, n, delta):
part_1 = math.exp(- (float(K) * m * float(eta)) / (alpha))
part_2 = (4 * alpha * float(S)**2 * float(M)**2) / (float(m) * float(sigma)**2 * float(n)**2)
part_3 = (math.log(1 / float(delta))) / (alpha - 1)
epsilon = part_1 * part_2 + part_3
return epsilon
def search_finetune_step(self, epsilon_list, num_remove_list, sigma):
C_lsi = 2 * sigma**2 / self.m
K_dict = {}
alpha_dict = {}
for num_remove in num_remove_list:
K_list = {}
alpha_list = {}
for target_epsilon in epsilon_list:
K = 1
epsilon_of_alpha = lambda alpha: self.epsilon_expression(K, sigma, self.eta, C_lsi, alpha, num_remove, self.M, self.m, self.n, self.delta)
min_epsilon_with_k = minimize_scalar(epsilon_of_alpha, bounds=(2, 10000), method='bounded')
while min_epsilon_with_k.fun > target_epsilon:
K = K + 1
epsilon_of_alpha = lambda alpha: self.epsilon_expression(K, sigma, self.eta, C_lsi, alpha, num_remove, self.M, self.m, self.n, self.delta)
min_epsilon_with_k = minimize_scalar(epsilon_of_alpha, bounds=(2, 10000), method='bounded')
K_list[target_epsilon] = K
alpha_list[target_epsilon] = min_epsilon_with_k.x
K_dict[num_remove] = K_list
alpha_dict[num_remove] = alpha_list
return K_dict, alpha_dict
def test_accuracy(self, w_list):
w = torch.tensor(w_list)
# test accuracy (before removal)
pred = self.X_test.matmul(w)
score = F.softmax(pred, dim = -1)
_, pred_class = score.max(dim = 1)
_, label = self.y_test.max(dim = 1)
correct_predictions = (pred_class == label).sum().item()
accuracy = correct_predictions / score.shape[0]
return accuracy
def run_unadjusted_langvin_multiclass(self, init_point, X, y, burn_in, sigma, len_list):
start_time = time.time()
w_list = unadjusted_langevin_algorithm_multiclass(init_point, self.dim_w, X, y, self.args.lam*self.n, sigma = sigma, num_class = self.num_class,
device = self.device, burn_in = burn_in,
len_list = len_list, step=self.eta, M = self.M, m = self.m)
end_time = time.time()
return w_list, end_time - start_time
def try__(self):
self.k_list = np.zeros(21).astype(int)
num_remove_per_itr = 5
target_epsilon = 1
# first get k for step 1 as warm start
k_1 = 1
epsilon_of_s1 = lambda alpha: self.epsilon_s1(alpha, k_1, num_remove_per_itr, 0.03) + (math.log(1 / float(self.delta))) / (alpha - 1)
min_epsilon_s1_k1 = minimize_scalar(epsilon_of_s1, bounds=(2, 100000), method='bounded')
while min_epsilon_s1_k1.fun > target_epsilon:
k_1 = k_1 + 1
epsilon_of_s1 = lambda alpha: self.epsilon_s1(alpha, k_1, num_remove_per_itr, 0.03) + (math.log(1 / float(self.delta))) / (alpha - 1)
min_epsilon_s1_k1 = minimize_scalar(epsilon_of_s1, bounds=(2, 100000), method='bounded')
# set k_1 in the list
self.k_list[1] = k_1
for step in range(2, 21):
self.k_list[step] = 1
epsilon_of_sstep = lambda alpha: self.epsilon_s_with_alpha(alpha, num_remove_per_itr, 0.03, step) + (math.log(1 / float(self.delta))) / (alpha - 1)
min_epsilon_sstep_kstep = minimize_scalar(epsilon_of_sstep, bounds=(2, 100000), method='bounded')
while min_epsilon_sstep_kstep.fun > target_epsilon:
self.k_list[step] = self.k_list[step] + 1
epsilon_of_sstep = lambda alpha: self.epsilon_s_with_alpha(alpha, num_remove_per_itr, 0.03, step) + (math.log(1 / float(self.delta))) / (alpha - 1)
min_epsilon_sstep_kstep = minimize_scalar(epsilon_of_sstep, bounds=(2, 100000), method='bounded')
import pdb; pdb.set_trace()
def main():
parser = argparse.ArgumentParser(description='Training a removal-enabled linear model and testing removal')
parser.add_argument('--data-dir', type=str, default='./data', help='data directory')
parser.add_argument('--result-dir', type=str, default='./result', help='directory for saving results')
parser.add_argument('--dataset', type=str, default='MNIST', help='[MNIST, 2dgaussian, kdgaussian]')
parser.add_argument('--extractor', type=str, default='raw_feature', help='extractor type')
parser.add_argument('--lam', type=float, default=1e-6, help='L2 regularization')
parser.add_argument('--num-removes', type=int, default=1000, help='number of data points to remove')
parser.add_argument('--num-steps', type=int, default=10000, help='number of optimization steps')
parser.add_argument('--train-mode', type=str, default='binary', help='train mode [ovr/binary]')
parser.add_argument('--M', type = float, default = 1, help = 'set M-Lipschitz constant (norm of gradient)')
parser.add_argument('--gpu', type = int, default = 6, help = 'gpu')
parser.add_argument('--sigma', type = float, default = 0.1, help = 'the parameter sigma')
parser.add_argument('--burn_in', type = int, default = 10000, help = 'burn in step number of LMC')
parser.add_argument('--gaussian_dim', type = int, default = 10, help = 'dimension of gaussian task')
parser.add_argument('--len_list', type = int, default = 10000, help = 'length of w to paint in 2D gaussian')
parser.add_argument('--finetune_step', type = int, default = 50, help = 'steps to finetune on the new removed data')
parser.add_argument('--search_burnin', type = int, default = 0, help = 'whether grid search to paint for burn-in')
parser.add_argument('--search_finetune', type = int, default = 0, help = 'whether to grid search finetune')
parser.add_argument('--search_burnin_newdata', type = int, default = 0, help = 'search burn in on new data')
parser.add_argument('--run_baseline', type = int, default = 1, help = 'run the baseline')
parser.add_argument('--sequential2', type = int, default = 0, help = 'whether test sequential unlearning')
parser.add_argument('--find_k', type = int, default = 0, help = 'find the k')
args = parser.parse_args()
print(args)
runner = Runner(args)
runner.get_metadata()
if args.find_k == 1:
# here may require to find sigma by hand
# please use runner.try__() to manually search for better sigma when k = 1
target_k_list = [1, 2, 5]
epsilon_list = [0.05, 0.1, 0.5, 1, 2, 5]
for target_k in target_k_list:
result_list = []
for epsilon in epsilon_list:
result_sigma = runner.search_k(target_k, epsilon)
result_list.append(result_sigma)
print('target k:'+str(target_k))
print(result_list)
elif args.sequential2 == 1:
runner.sequential2()
else:
runner.train()
if __name__ == '__main__':
main()