-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmakesteps.py
914 lines (737 loc) · 29.1 KB
/
makesteps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
import argparse
from PIL import Image
import colorsys
import math
import enum
from itertools import zip_longest, product
import subprocess
TEENSY_MCU = "AT90USB1286"
JOYSTICK_HEX = "Joystick.hex"
# Other potential methods:
# Edge detection?
# Boxes
# Fold more steps
"""
Hue: 30 hues, each at zero, so H = i*12
Vividness: 15 saturations, so S = i*6
Vividness: 15 brightnesses, so B = i*6
"""
TIME_PER_STEP = 0.2 # This really is just about exactly right, according to time trials
class Step(enum.Enum):
NONE = (0x0, 0x08)
Y = (0x01, 0x08)
B = (0x02, 0x08)
A = (0x04, 0x08)
X = (0x08, 0x08)
L = (0x10, 0x08)
R = (0x20, 0x08)
LR = (0x30, 0x08)
ZL = (0x40, 0x08)
ZR = (0x80, 0x08)
# MINUS = (0x100, 0x08)
# PLUS = (0x200, 0x08)
# LCLICK = (0x400, 0x08)
# RCLICK = (0x800, 0x08)
# HOME = (0x1000, 0x08)
# CAPTURE = (0x2000, 0x08)
HAT_UP = (0, 0x00)
HAT_RIGHT = (0, 0x02)
HAT_DOWN = (0, 0x04)
HAT_LEFT = (0, 0x06)
HAT_CENTER = (0, 0x08)
HAT_UP_RIGHT = (0, 0x01)
HAT_DOWN_RIGHT = (0, 0x03)
HAT_DOWN_LEFT = (0, 0x05)
HAT_UP_LEFT = (0, 0x07)
class PseudoStep(object):
def __init__(self, step, label=None):
super(PseudoStep, self).__init__()
self.steps = [step]
self.label = label
@property
def name(self):
steps_part = (self.steps[0].name if len(self.steps) == 1 else "+".join(s.name for s in self.steps))
label_part = (f" ({self.label})" if self.label else "")
return f"{steps_part}{label_part}"
@property
def value(self):
v1, v2 = 0, 8
for step1, step2 in (s.value for s in self.steps):
v1 |= step1
assert not (v2 != 8 and step2 != 8)
v2 = min(v2, step2)
return (v1, v2)
def plus(self, other):
if other is not Step.NONE:
self.steps.append(other)
return self
def __repr__(self):
return "<%s.%s: %r>" % (self.__class__.__name__, self.name, self.value)
def foldSteps(step1, step2):
if step1.value[0] != 0x0 and step2.value[0] != 0x0:
# print(f"Can't fold {step1}, {step2}")
return [step1, step2]
if step1.value[0] == Step.LR.value[0] or step2.value[0] == Step.LR.value[0]:
# print(f"Can't fold {step1}, {step2}")
return [step1, step2]
if step1.value[1] != 0x8 and step2.value[1] != 0x8:
# print(f"Can't fold {step1}, {step2}")
return [step1, step2]
else:
return [PseudoStep(step1).plus(step2)]
def foldStepSeqs(steps1, steps2):
if not steps1:
return steps2
if not steps2:
return steps1
new_steps_compressed = []
for xstep, ystep in zip_longest(steps1, steps2, fillvalue=Step.NONE):
new_steps_compressed += foldSteps(xstep, ystep)
# print("Folded")
# print(steps1)
# print(steps2)
# print(new_steps_compressed)
return new_steps_compressed
def compressSteps(steps):
steps = steps.copy()
last_step = None
last_step_times = 0
for next_step in steps:
if last_step and next_step.value == last_step.value:
last_step_times += 1
else:
if last_step:
bData, hData = last_step.value
yield (bData, hData, last_step_times, last_step.name)
last_step_times = 1
last_step = next_step
if last_step:
bData, hData = last_step.value
yield (bData, hData, last_step_times, last_step.name)
def saveSteps(steps):
numsteps = 0
with open("steps.c", "w") as fp:
fp.write('#include "types.h"\n')
fp.write('uint8_t step[] = {\n')
for bData, hData, repetitions, label in compressSteps(steps):
numsteps += 1
fp.write(f" {bData}, {hData}, {repetitions}, // {label} x {repetitions}\n")
fp.write(" 0 };\n")
fp.write(f"static int numsteps = {numsteps};\n")
# Zero index
HUES = 30 - 1
SATS = 15 - 1
VALS = 15 - 1
DEFAULT_PALETTE = [
(0, 12, 14), # Red
(2, 12, 14), # Orange
(5, 13, 14), # Yellow
(8, 12, 14), # Lime
(10, 12, 8), # Green
(16, 11, 13), # Teal # Double check this
(17, 12, 13), # Cerulean
(20, 11, 14), # Blue
(22, 10, 14), # Purple
(26, 9, 14), # Pink # Double check
(1, 5, 14), # Beige
(1, 8, 8), # Brown
(0, 0, 14), # White
(0, 0, 6), # Grey
(0, 0, 0) # Black
]
def percToInt(max):
def c(val):
return round(val * max)
return c
def rgbaToACColor(pixel):
if pixel[3] == 0:
# Transparent, bad
# raise NotImplementedError
return (-1, -1, -1)
r, g, b, *_ = pixel
h, s, v = colorsys.rgb_to_hsv(r, g, b)
v /= 255
tup = (percToInt(HUES)(h), percToInt(SATS)(s), percToInt(VALS)(v))
return tup
def acColorToRgba(color):
if color == (-1, -1, -1):
# raise NotImplementedError
return (255, 0, 255, 0)
# print(color)
h_, s_, v_ = color
rgbf = colorsys.hsv_to_rgb(
(h_ / HUES),
(s_ / SATS),
(v_ / VALS)
)
rgb = list(map(percToInt(255), rgbf))
# print(rgb)
return (*rgb, 255)
class ACCanvas():
def __init__(self, width, height):
super(ACCanvas, self).__init__()
self.w = width
self.h = height
self.canvas = [[None for x in range(width)] for y in range(height)]
self.palette = None
self.steps = []
def fromPattern(self, infile_image):
in_pixels = infile_image.load()
for x in range(self.w):
for y in range(self.h):
self.canvas[x][y] = rgbaToACColor(in_pixels[x, y])
return self
def fromSentinal(self):
self.canvas = [[(-2, -2, -2) for x in range(self.w)] for y in range(self.h)]
return self
def toPalImg(self):
assert self.palette
image_canvas = Image.new("RGBA", (len(self.palette), 1), color=(0, 0, 0, 0,))
pixels = image_canvas.load()
for i, pix in enumerate(self.palette):
pixels[i, 0] = acColorToRgba(pix)
return image_canvas
def toImage(self):
image_canvas = Image.new("RGBA", (self.w, self.h), color=(0, 0, 0, 0,))
pixels = image_canvas.load()
for x in range(self.w):
for y in range(self.h):
pixels[x, y] = acColorToRgba(self.canvas[x][y])
return image_canvas
def getAllNeighborPairs(self):
# For each, check colors down and to the right
for x in range(self.w - 1):
for y in range(self.h - 1):
yield ((x, y), (x + 1, y))
yield ((x, y), (x, y + 1))
def sortColorsByAdjacency(self, colorset):
if len(colorset) < 2:
return colorset
# raise NotImplementedError
colorset = list(colorset)
color_pair_count = {}
for (x1, y1), (x2, y2) in self.getAllNeighborPairs():
if self.canvas[x1][y1] != self.canvas[x2][y2]:
color_pair = tuple(sorted([self.canvas[x1][y1], self.canvas[x2][y2]]))
color_pair_count[color_pair] = color_pair_count.get(color_pair, 0) + 1
# Todo: Implement this properly
color_pair_list = sorted(((color_pair_count.get(p), p) for p in color_pair_count.keys()))[::-1]
freq, (color1, color2) = color_pair_list[0]
# print(freq, colorset.index(color1), colorset.index(color2))
new_colorset = [color1, color2]
for freq, (color1, color2) in color_pair_list[1:]:
# print(freq, colorset.index(color1), colorset.index(color2))
for (c1, c2) in [(color1, color2), (color2, color1)]:
if new_colorset[0] == c1:
if c2 not in new_colorset:
new_colorset = [c2] + new_colorset
if new_colorset[-1] == c1:
if c2 not in new_colorset:
new_colorset.append(c2)
for c in (color1, color2):
if c not in new_colorset:
new_colorset.append(c)
# print([colorset.index(c) for c in new_colorset])
if len(colorset) == len(new_colorset):
break
for c in colorset:
if c not in new_colorset:
new_colorset.append(c)
return new_colorset
def genPalette(self, sortColorset=sorted):
# if self.palette:
# return
colorset = set()
for row in self.canvas:
for pixel in row:
if pixel != (-1, -1, -1):
colorset.add(pixel)
assert len(colorset) <= 15
self.palette = sortColorset(colorset)
for j, color in enumerate(self.palette):
default = DEFAULT_PALETTE[j]
# if color[1] == 0:
# self.palette[j] = (default[0], color[1], default[2])
# If vividness is 0, hue doesn't matter
if color[1] == 0:
repl = (default[0], color[1], color[2])
if repl != color:
# print(f"Replacing {color} with {repl}")
self.palette[j] = repl
for x in range(self.w):
for y in range(self.h):
if self.canvas[x][y] == color:
self.canvas[x][y] = repl
# If brightness is 0, hue and vividness do not matter
if color[2] == 0:
repl = (default[0], default[1], color[2])
if repl != color:
# print(f"Replacing {color} with {repl}")
self.palette[j] = repl
for x in range(self.w):
for y in range(self.h):
if self.canvas[x][y] == color:
self.canvas[x][y] = repl
# print(f"Generated {len(colorset)} color image")
# print(self.palette)
# while y < source.h:
# while x < source.w:
# yield (x, y)
# x += 1
# y += 1
# x -= 1
# while x > 0:
# yield (x, y)
# x -= 1
# y += 1
class Tool(enum.Enum):
PAL = (0, 0)
PEN = (0, 1)
BOX = (0, 2)
FILL = (0, 3)
STAMP_STAR = (0, 4)
FILL_ALL = (0, 5)
SWAP_PREVIEW = (0, 6)
EDIT_COLOR = (1, 0)
LINE = (1, 1)
CIRCLE = (1, 2)
STAMP_CIRCLE = (1, 3)
STAMP_HEART = (1, 4)
SHIFT = (1, 5)
MIRROR = (1, 6)
class Printer(object):
def __init__(self, source, settings={}):
super(Printer, self).__init__()
self.steps = []
self.source = source
self.pal_index = 0
self.drawing = True
self.x = 16
self.y = 16
self.tool_x = 0
self.tool_y = 1
self.pen_size = 1
self.round_stamp_size = 2
self.star_stamp_size = 2
self.heart_stamp_size = 2
self.mirror = False
self.settings = {
"startfill": True,
"usemirror": True,
"vertical": True,
"horizontal": False,
"adjpalette": False,
# "neighborcolor": True,
}
self.settings.update(settings)
self.sim = ACCanvas(self.source.w, self.source.h).fromSentinal()
def setMirrored(self, target):
new_steps = []
if target is True and self.mirror is False:
# Select tool
new_steps.append(PseudoStep(Step.ZR, "SetMirrorT"))
self.mirror = True
if target is False and self.mirror is True:
# Open menu
new_steps.append(PseudoStep(Step.ZR, "SetMirrorF"))
self.mirror = False
return new_steps
def setDrawing(self, target):
new_steps = []
if target is True and self.drawing is False:
# Select tool
new_steps.append(PseudoStep(Step.A, "SetDrawingT"))
self.drawing = True
if target is False and self.drawing is True:
# Open menu
new_steps.append(PseudoStep(Step.X, "SetDrawingF"))
self.drawing = False
return new_steps
def moveTo(self, actual, desired, plus, minus):
new_steps = []
if desired > actual:
new_steps += ([plus] * (desired - actual))
elif actual > desired:
new_steps += ([minus] * (actual - desired))
return new_steps
def setColorIndex(self, index, commit=True):
new_steps = []
if self.pal_index == index:
return new_steps
# if self.settings.get("neighborcolor") and abs(self.pal_index - index) > 4:
# # new_steps_start = len(new_steps)
# original_x, original_y = self.x, self.y
# # print(self.x, self.y, list(self.getNeighbors(self.x, self.y)))
# for nx, ny in self.getNeighbors(self.x, self.y):
# if self.sim.canvas[nx][ny] == self.source.palette[index]:
# new_steps += self.moveCursorTo(nx, ny)
# new_steps.append(PseudoStep(Step.LR, f"ColorPick{index} from {nx},{ny} for {original_x},{original_y}"))
# self.pal_index = index
# break
# new_steps += self.moveCursorTo(original_x, original_y)
# # print("nc", len(new_steps) - new_steps_start)
# new_steps_start = len(new_steps)
new_steps += self.moveTo(
self.pal_index, index,
PseudoStep(Step.R, f"ColorR{index}"), PseudoStep(Step.L, f"ColorL{index}"))
# print("c", len(new_steps) - new_steps_start)
self.pal_index = index
return new_steps
def getNeighbors(self, tx, ty):
for ox in [0, -1, 1]:
x = self.x + ox
if x > 0 and x < self.sim.w:
for oy in [0, -1, 1]:
y = self.y + oy
if y > 0 and y < self.sim.h:
if (self.x, self.y) != (x, y):
yield (x, y)
def setColor(self, color):
new_steps = []
try:
new_steps += self.setColorIndex(self.source.palette.index(color))
except ValueError:
if color == (-1, -1, -1):
new_steps += self.setColorIndex(-1)
else:
print(f"Color '{color}' not in list:")
print(self.source.palette)
raise
return new_steps
def setTool(self, tool):
new_steps = []
target_x, target_y = tool.value
if (target_x, target_y) != (self.tool_x, self.tool_y):
new_steps += self.setDrawing(False)
new_steps += self.moveTo(self.tool_x, target_x, Step.HAT_RIGHT, Step.HAT_LEFT)
self.tool_x = target_x
new_steps += self.moveTo(self.tool_y, target_y, Step.HAT_DOWN, Step.HAT_UP)
self.tool_y = target_y
new_steps.append(PseudoStep(Step.A, "SetTool"))
self.drawing = True
# new_steps += self.setDrawing(True)
return new_steps
def moveCursorTo(self, target_x, target_y):
new_steps_x = []
new_steps_y = []
new_steps_x += self.moveTo(self.x, target_x, Step.HAT_RIGHT, Step.HAT_LEFT)
self.x = target_x
new_steps_y += self.moveTo(self.y, target_y, Step.HAT_DOWN, Step.HAT_UP)
self.y = target_y
new_steps_compressed = []
for xstep, ystep in zip_longest(new_steps_x, new_steps_y, fillvalue=Step.NONE):
if ystep == Step.NONE:
new_steps_compressed.append(xstep)
elif xstep == Step.NONE:
new_steps_compressed.append(ystep)
elif xstep == Step.HAT_LEFT:
if ystep == Step.HAT_UP:
new_steps_compressed.append(Step.HAT_UP_LEFT)
elif ystep == Step.HAT_DOWN:
new_steps_compressed.append(Step.HAT_DOWN_LEFT)
else:
raise AssertionError(ystep)
elif xstep == Step.HAT_RIGHT:
if ystep == Step.HAT_UP:
new_steps_compressed.append(Step.HAT_UP_RIGHT)
elif ystep == Step.HAT_DOWN:
new_steps_compressed.append(Step.HAT_DOWN_RIGHT)
else:
raise AssertionError(ystep)
else:
raise AssertionError(xstep)
# print(new_steps_x)
# print(new_steps_y)
# print(new_steps_compressed)
return new_steps_compressed
def smartTraverse(self, source):
if self.settings.get("horizontal") and self.settings.get("vertical"):
# Diagonal traverse
# x = 0
# y = 0
# for sx in range(source.w):
# x = sx
# y = 0
# while x > 0 and y < source.h:
# x -= 1
# y += 1
# yield (x, y)
raise NotImplementedError
elif self.settings.get("horizontal") or self.settings.get("vertical"):
x = 0
y = 0
while y < source.h:
while x < source.w:
yield (x, y) if self.settings.get("horizontal") else (y, x)
x += 1
y += 1
x -= 1
while x > 0:
yield (x, y) if self.settings.get("horizontal") else (y, x)
x -= 1
yield (x, y) if self.settings.get("horizontal") else (y, x)
y += 1
else:
raise NotImplementedError
def markPixel(self, target_x, target_y, target_color):
new_steps = []
if self.sim.canvas[target_x][target_y] == target_color:
return new_steps
if self.settings.get("usemirror") and self.source.canvas[self.source.w - target_x - 1][target_y] == target_color:
should_mirror = True
else:
should_mirror = False
new_steps += self.setTool(Tool.PEN)
new_steps += self.setDrawing(True)
move_to_steps = self.moveCursorTo(target_x, target_y)
new_steps += foldStepSeqs(
move_to_steps,
self.setColor(target_color) + self.setMirrored(should_mirror)
)
# new_steps += self.setColor(target_color)
# Make mark
if should_mirror:
new_steps += self.setMirrored(True)
self.sim.canvas[self.x][self.y] = target_color
self.sim.canvas[self.sim.w - self.x - 1][self.y] = target_color
else:
new_steps += self.setMirrored(False)
self.sim.canvas[self.x][self.y] = target_color
last_step = new_steps.pop()
new_steps += foldSteps(last_step, Step.A) # Safe
# print(f"Mark {target_x} {target_y} {target_color}")
# printSteps(new_steps)
return new_steps
# def markArea(self, area, target_color):
# new_steps = []
# if all(self.sim.canvas[x][y] == target_color for x, y in area):
# return new_steps
# new_steps += self.setTool(Tool.PEN)
# new_steps += self.setDrawing(True)
# new_steps += self.setColor(target_color)
# for x, y in self.smartTraverse(self.source):
# if (x, y) in area:
# new_steps += foldStepSeqs(
# self.moveCursorTo(x, y),
# self.setColor(target_color) + self.setMirrored(should_mirror)
# )
# # new_steps += self.setColor(target_color)
# # Make mark
# if should_mirror:
# new_steps += self.setMirrored(True)
# new_steps.append(Step.A)
# self.sim.canvas[self.x][self.y] = target_color
# self.sim.canvas[self.sim.w - self.x - 1][self.y] = target_color
# else:
# new_steps += self.setMirrored(False)
# new_steps.append(Step.A)
# self.sim.canvas[self.x][self.y] = target_color
# # print(f"Mark {target_x} {target_y} {target_color}")
# # printSteps(new_steps)
# return new_steps
def setPalette(self, source_palette):
new_steps = []
assert source_palette
# Reset palette
new_steps += self.setTool(Tool.PAL)
new_steps += [Step.NONE, Step.HAT_DOWN, Step.NONE, PseudoStep(Step.A, "ResetPalette"), Step.NONE]
self.drawing = False # Odd case
new_steps += self.setTool(Tool.EDIT_COLOR)
new_steps += self.setDrawing(True)
# Set each color
# Default colors are not all zero. Compensate.
for j, color in enumerate(source_palette):
new_steps += self.setColorIndex(j)
new_steps.append(Step.NONE)
for desired, actual in zip(color, DEFAULT_PALETTE[j]):
new_steps += self.moveTo(actual, desired, Step.HAT_RIGHT, Step.HAT_LEFT)
new_steps.append(Step.HAT_DOWN)
# Exit menu
new_steps.append(Step.A)
# Done
new_steps += self.setTool(Tool.PEN)
new_steps += self.setDrawing(True)
new_steps.append(Step.NONE)
return new_steps
def fillAll(self, color):
new_steps = []
new_steps += self.setColor(color)
new_steps += self.setTool(Tool.FILL_ALL)
new_steps.append(PseudoStep(Step.A, "FillAll"))
for x in range(self.sim.w):
for y in range(self.sim.h):
self.sim.canvas[x][y] = color
return new_steps
def toSteps(self):
new_steps = []
if self.settings.get("adjpalette"):
self.source.genPalette(sortColorset=self.source.sortColorsByAdjacency)
else:
self.source.genPalette()
new_steps += self.setPalette(self.source.palette)
new_steps.append(Step.NONE)
new_steps += self.drawImage(self.source)
# for step in self.genStepsPalette():
# self.steps.append(step)
# for step in self.genStepsDraw():
# self.steps.append(step)
return new_steps
def drawImage(self, source):
new_steps = []
if self.settings.get("startfill"):
all_pixels = [item for sublist in source.canvas for item in sublist]
most_common_color = max(set(all_pixels), key=all_pixels.count)
new_steps += self.fillAll(most_common_color)
new_steps += self.drawImageCustom(source)
new_steps += foldStepSeqs(self.moveCursorTo(16, 16), self.setColorIndex(0))
new_steps += self.setMirrored(False)
self.sim.toImage().save("progress.png")
# assert self.sim.canvas == self.source.canvas
return new_steps
def drawImageCustom(self, source):
raise NotImplementedError
class NaivePrinter(Printer):
def drawImageCustom(self, source):
new_steps = []
for x, y in self.smartTraverse(source):
new_steps += self.markPixel(x, y, source.canvas[x][y])
return new_steps
class ScreenPrinter(Printer):
def drawImageCustom(self, source):
new_steps = []
for color in source.palette:
for x, y in self.smartTraverse(source):
if source.canvas[x][y] == color:
new_steps += self.markPixel(x, y, color)
return new_steps
class SpiralPrinter(Printer):
def drawImageCustom(self, source):
new_steps = []
direction = "L"
x = 16
y = 16
while self.sim.canvas != source:
new_steps += self.markPixel(x, y, source.canvas[x][y])
try:
if direction == "L":
x -= 1
# new_steps.append(Step.HAT_LEFT)
if self.sim.canvas[x][y - 1] != source.canvas[x][y - 1]:
direction = "U"
elif direction == "R":
x += 1
# new_steps.append(Step.HAT_RIGHT)
if self.sim.canvas[x][y + 1] != source.canvas[x][y + 1]:
direction = "D"
elif direction == "U":
y -= 1
# new_steps.append(Step.HAT_UP)
if self.sim.canvas[x + 1][y] != source.canvas[x + 1][y]:
direction = "R"
elif direction == "D":
y += 1
# new_steps.append(Step.HAT_DOWN)
if self.sim.canvas[x - 1][y] != source.canvas[x - 1][y]:
direction = "L"
except IndexError:
print(x, y)
break
return new_steps
def add_bool_arg(parser, name, default=True, help=None):
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument('--' + name, dest=name.replace("-", "_"), action='store_true', help=help + f" (Default: {default})")
group.add_argument('--no-' + name, dest=name.replace("-", "_"), action='store_false', help=help + f" (Default: {default})")
parser.set_defaults(**{name: default})
def identifyInfile(infile_image):
print(infile_image.size)
if infile_image.size[0] < 64:
if infile_image.size[1] < 64:
return "PATTERN"
return "UNKNOWN"
def printSteps(steps):
# print("\n".join(repr(s) for s in steps))
for bData, hData, repetitions, label in compressSteps(steps):
print(f"{label} x {repetitions}")
def fmtTime(seconds):
if seconds <= 60:
return f"{seconds}s"
else:
return f"{int(seconds // 60)}m {int(seconds % 60)}s"
# Main
parser = argparse.ArgumentParser()
parser.add_argument("infile", help="Input pattern file")
add_bool_arg(parser, "dump", default=True, help="Save pattern")
add_bool_arg(parser, "gen", default=True, help="Generate steps file")
add_bool_arg(parser, "preview", default=True, help="Generate scaled preview file")
add_bool_arg(parser, "bogo", default=True, help="Find fastest solution")
add_bool_arg(parser, "make", default=False, help="Automatically run make after completion")
args = parser.parse_args()
infile_image = Image.open(args.infile).convert('RGBA')
infile_type = identifyInfile(infile_image)
pattern = None
if infile_type == "PATTERN":
w, h = infile_image.size
pattern = ACCanvas(w, h).fromPattern(infile_image)
else:
raise NotImplementedError
if args.dump:
if infile_type == "PATTERN":
pattern.toImage().save("dump.png")
pattern.genPalette()
pattern.toPalImg().save("pal.png")
else:
raise NotImplementedError
if args.preview:
if infile_type == "PATTERN":
image = args.infile
elif args.dump:
image = "dump.png"
else:
raise NotImplementedError
subprocess.run(["ScalerTest_Windows.exe", "-6xBRZ", image, "scalepreview.png"])
print("Generated preview at scalepreview.png")
settings_permutations = [
(
binstr,
{
"usemirror": (binstr[0] == "1"),
"horizontal": (binstr[1] == "1"),
"vertical": (binstr[2] == "1"),
"startfill": (binstr[3] == "1"),
"adjpalette": (binstr[4] == "1")
},
)
for binstr in
["".join(seq) for seq in product("01", repeat=5)]
]
if args.gen:
if args.bogo:
best_steps = None
best_printer = None
# , SpiralPrinter
for Printer_ in [NaivePrinter, ScreenPrinter]:
for settings_str, settings in settings_permutations:
printer = Printer_(pattern, settings=settings)
try:
steps = printer.toSteps()
print(f"{Printer_} ({settings_str}) printed pattern in {len(steps)} steps ({(len(steps)*3)/8} bytes) (~{fmtTime(len(steps) * TIME_PER_STEP)} runtime)")
if best_steps is None or len(steps) < len(best_steps):
best_steps = steps
best_printer = printer
print("BEST!")
except NotImplementedError:
# print(f"{Printer_} ({settings_str}) has invalid settings.")
pass
except Exception:
print(f"{Printer_} ({settings_str}) failed!")
import traceback
traceback.print_exc()
print(best_printer)
print(best_printer.settings)
saveSteps(best_steps)
else:
saveSteps(NaivePrinter(pattern).toSteps())
if args.make:
if subprocess.run(["make"]):
print(f"Waiting for {TEENSY_MCU}...")
subprocess.run(["../teensy_loader_cli", "--mcu", TEENSY_MCU, "-w", JOYSTICK_HEX])