- [2024/09/20] 🥳 Ruler is accepted by EMNLP 2024 Findings.
Ruler a novel, model-agnostic approach employs Meta Length Tokens (MLTs) to enhance the instruction-following ability of LLMs under length-constrained instructions
Ruler equips LLMs with the ability to generate responses of a target length. Moreover, it can automatically generate appropriate MLT when not target length is provided. Comprehensive experments show the effectiveness of Ruler across different LLMs.
We also provide a more detailed experiments document (specific to each experiment and including all the results!).
First, you should set up a python environment. This code base has been tested under python 3.x, and we officially support python 3.10.
conda create -n ruler python=3.10
cd Ruler # where contains 'requirements.txt'
pip install -r requirements.txt
export PYTHONPATH=xxxx/Ruler/src
cd src
# create folders and download datasets
bash ../scripts/download.sh
Closed-source Model
python exp/run_exp_api.py\
--dataset_path ../datasets/tlg_dataset.jsonl\
--model <MODEL>\
--output_path ../outputs/tlg/tlg_<MODEL_NAME>.jsonl
--key <MODEL KEY>
Open-source Model
python exp/run_exp.py\
--dataset_path ../datasets/tlg_dataset.jsonl\
--model_name_or_path <PATH_TO_THE_MODEL>\
--output_path ../outputs/tlg/tlg_<MODEL_NAME>.jsonl
Calculate scores
Different Levels
:
python exp/cal_level_scores.py\
--dataset_path <PATH_TO_GENERATED_JSONL>
Different MLT
:
python exp/cal_mlt_scores.py\
--dataset_path <PATH_TO_GENERATED_JSONL>
Finetuning scripts:
export CUDA_VISIBLE_DEVICES=0,1,2,3
find_free_port() {
while :
do
PORT=$(( ( RANDOM % 64512 ) + 1024 ))
(echo >/dev/tcp/localhost/$PORT) >/dev/null 2>&1
if [ $? -ne 0 ]; then
echo $PORT
return
fi
done
}
export MASTER_PORT=$(find_free_port)
LEARNING_RATE=2e-5
NUM_TRAIN_EPOCHS=3
VANILLA=False
MODEL_NAME_OR_PATH=<MODEL_NAME_OR_PATH>
echo "Finetune from: ${MODEL_NAME_OR_PATH}"
MODEL=${MODEL_NAME_OR_PATH##*/}
TEMPLATE=custom
echo "Finetune data template: ${TEMPLATE}"
DATA_PATH=../datasets/ruler_training_dataset.jsonl
echo "Finetune data path: ${DATA_PATH}"
MODEL_MAX_LENGTH=2048
echo "Model max length: ${MODEL_MAX_LENGTH}"
BATCH_SIZE=4
echo "Per device train batch size: ${BATCH_SIZE}"
GRAD_ACCUM=8
echo "Gradient accumulation steps: ${GRAD_ACCUM}"
OUTPUT_DIR="../outputs/checkpoints/ruler_${MODEL}_bs_${BATCH_SIZE}_ga_${GRAD_ACCUM}_lr_${LEARNING_RATE}_eps_${NUM_TRAIN_EPOCHS}"
LOG_DIR=../logs
deepspeed --master_port=$MASTER_PORT finetuning/finetune.py \
--vanilla $VANILLA \
--deepspeed ../configs/ds_config_zero3.json \
--model_name_or_path $MODEL_NAME_OR_PATH \
--template $TEMPLATE\
--model_max_length $MODEL_MAX_LENGTH \
--data_path $DATA_PATH \
--output_dir $OUTPUT_DIR \
--bf16 True \
--tf32 True \
--per_device_train_batch_size ${BATCH_SIZE} \
--gradient_accumulation_steps ${GRAD_ACCUM} \
--gradient_checkpointing True \
--lr_scheduler_type cosine \
--learning_rate ${LEARNING_RATE} \
--warmup_ratio 0.05 \
--num_train_epochs ${NUM_TRAIN_EPOCHS} \
--evaluation_strategy no \
--save_strategy epoch \
--save_total_limit 1 \
--logging_steps 5 \
2>&1 | tee ${LOG_DIR}/output_ruler_${MODEL}.log
Run exp:
python exp/run_exp.py\
--dataset_path ../data/multi_mlt.jsonl\
--model_name_or_path <MODEL_NAME_OR_PATH>\
--gpus 1\
--template <TEMPLATE>\
--output_path ../outputs/multi_mlt/mmlt_<MDOEL_NAME>.jsonl
Calculate scores
python exp/analysis_mmlt.py\
--dataset_path ../outputs/multi_mlt/mmlt_<MDOEL_NAME>.jsonl
Run exp:
python exp/run_exp.py\
--dataset_path ../datasets/self_generated_mlt.jsonl\
--model_name_or_path <MODEL_NAME_OR_PATH>\
--gpus 1\
--template custom\
--output_path ../outputs/self_generated_mlt/sgm_<MDOEL_NAME>.jsonl
Calculate scores
python exp/analysis_sgm.py\
--dataset_path ../outputs/self_generated_mlt/sgm_<MDOEL_NAME>.jsonl
lm_eval
script:
set -ex
export NUMEXPR_MAX_THREADS=128
MODEL=vllm
MODEL_NAME=<MODEL_NAME>
MODEL_NAME_OR_PATH=<MODEL_NAME_OR_PATH>
OUTPUT_PATH=../outputs/overall_performance/${MODEL_NAME}
TOKENIZER_MODE=auto
NUM_GPUS=1
GPU_MEMORY_UTILIZATION=0.8
mkdir -p $OUTPUT_PATH
lm_eval --model $MODEL \
--model_args pretrained=${MODEL_NAME_OR_PATH},trust_remote_code=True,tokenizer_mode=${TOKENIZER_MODE},tensor_parallel_size=${NUM_GPUS},dtype=auto,gpu_memory_utilization=${GPU_MEMORY_UTILIZATION} \
--tasks ai2_arc \
--device cuda \
--output_path ${OUTPUT_PATH}/${MODEL}_eval_ai2_arc \
--batch_size 1 \
--num_fewshot 25 \
--write_out \
2>&1 | tee ${OUTPUT_PATH}/${MODEL}_eval_ai2_arc.log
lm_eval --model $MODEL \
--model_args pretrained=${MODEL_NAME_OR_PATH},trust_remote_code=True,tokenizer_mode=${TOKENIZER_MODE},tensor_parallel_size=${NUM_GPUS},dtype=auto,gpu_memory_utilization=${GPU_MEMORY_UTILIZATION} \
--tasks hellaswag \
--device cuda \
--output_path ${OUTPUT_PATH}/${MODEL}_eval_hellaswag \
--batch_size 1 \
--num_fewshot 10 \
--write_out \
2>&1 | tee ${OUTPUT_PATH}/${MODEL}_eval_hellaswag.log
lm_eval --model $MODEL \
--model_args pretrained=${MODEL_NAME_OR_PATH},trust_remote_code=True,tokenizer_mode=${TOKENIZER_MODE},tensor_parallel_size=${NUM_GPUS},dtype=auto,gpu_memory_utilization=${GPU_MEMORY_UTILIZATION} \
--tasks truthfulqa \
--device cuda \
--output_path ${OUTPUT_PATH}/${MODEL}_eval_truthfulqa \
--batch_size 1 \
--num_fewshot 0 \
--write_out \
2>&1 | tee ${OUTPUT_PATH}/${MODEL}_eval_truthfulqa.log
lm_eval --model $MODEL \
--model_args pretrained=${MODEL_NAME_OR_PATH},trust_remote_code=True,tokenizer_mode=${TOKENIZER_MODE},tensor_parallel_size=${NUM_GPUS},dtype=auto,gpu_memory_utilization=${GPU_MEMORY_UTILIZATION} \
--tasks mmlu \
--device cuda \
--output_path ${OUTPUT_PATH}/${MODEL}_eval_mmlu \
--batch_size 1 \
--num_fewshot 5 \
--write_out \
2>&1 | tee ${OUTPUT_PATH}/${MODEL}_eval_mmlu.log
lm_eval --model $MODEL \
--model_args pretrained=${MODEL_NAME_OR_PATH},trust_remote_code=True,tokenizer_mode=${TOKENIZER_MODE},tensor_parallel_size=${NUM_GPUS},dtype=auto,gpu_memory_utilization=${GPU_MEMORY_UTILIZATION} \
--tasks winogrande \
--device cuda \
--output_path ${OUTPUT_PATH}/${MODEL}_eval_winogrande \
--batch_size 1 \
--num_fewshot 5 \
--write_out \
2>&1 | tee ${OUTPUT_PATH}/${MODEL}_eval_winogrande.log
lm_eval --model $MODEL \
--model_args pretrained=${MODEL_NAME_OR_PATH},trust_remote_code=True,tokenizer_mode=${TOKENIZER_MODE},tensor_parallel_size=${NUM_GPUS},dtype=auto,gpu_memory_utilization=${GPU_MEMORY_UTILIZATION} \
--tasks gsm8k \
--device cuda \
--output_path ${OUTPUT_PATH}/${MODEL}_eval_gsm8k \
--batch_size 1 \
--num_fewshot 5 \
--write_out \
2>&1 | tee ${OUTPUT_PATH}/${MODEL}_eval_gsm8k.log
If you finding our work interesting or helpful to you, please cite this repo.
@misc{li2024rulermodelagnosticmethodcontrol,
title={Ruler: A Model-Agnostic Method to Control Generated Length for Large Language Models},
author={Jiaming Li and Lei Zhang and Yunshui Li and Ziqiang Liu and yuelin bai and Run Luo and Longze Chen and Min Yang},
year={2024},
eprint={2409.18943},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2409.18943},
}
If you have any questions, feel free to contact us at jm.li4@siat.ac.cn