-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathBigInt with fft(add,mult,div)___nlogn__10^5 length Number
243 lines (230 loc) · 11.6 KB
/
BigInt with fft(add,mult,div)___nlogn__10^5 length Number
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
typedef long long ll;
typedef long double ld;
typedef complex<ld> pt;
const int MOD = 1e9 + 7;
const ld PI = acos(-1.L);
template<class T> struct cplx {
T x, y; cplx() {x = 0.0; y = 0.0;}
cplx(T nx, T ny=0) {x = nx; y = ny;}
cplx operator+(const cplx &c) const {return {x + c.x, y + c.y};}
cplx operator-(const cplx &c) const {return {x - c.x, y - c.y};}
cplx operator*(const cplx &c) const {return {x*c.x - y*c.y, x*c.y + y*c.x};}
cplx& operator*=(const cplx &c) { return *this={x*c.x-y*c.y, x*c.y+y*c.x}; }
inline T real() const { return x; }
inline T imag() const { return y; }
// Only supports right scalar multiplication like p*c
template<class U> cplx operator*(const U &c) const {return {x*c,y*c};}
template<class U> cplx operator/(const U &c) const {return {x/c,y/c};}
template<class U> void operator/=(const U &c) {x /= c; y /= c;}};
#define polar(r,a) (cplx<ld>){r*cos(a),r*sin(a)}
const int DIG = 9, FDIG = 4;
const int BASE = 1e9, FBASE = 1e4;
typedef cplx<ld> Cplx;
struct BigInt {
int sgn;
vector<int> a;
BigInt() : sgn(1) {}
BigInt(ll v) { *this = v; }
BigInt& operator = (ll v) { sgn = 1; if (v < 0) sgn = -1, v = -v;
a.clear(); for (; v > 0; v /= BASE) a.push_back(v % BASE);
return *this; }
BigInt(const BigInt& other) { sgn = other.sgn; a = other.a; }
friend void swap(BigInt& a, BigInt& b) { swap(a.sgn, b.sgn);
swap(a.a, b.a); }
BigInt& operator = (BigInt other) { swap(*this, other); return *this; }
BigInt(BigInt&& other) : BigInt() { swap(*this, other); }
BigInt(const string& s) { read(s); }
void read(const string& s) {
sgn = 1; a.clear(); int k = 0;
for (; k < s.size() && (s[k] == '-' || s[k] == '+'); k++)
if (s[k] == '-') sgn = -sgn;
for (int i = s.size()-1; i >= k; i -= DIG) {
int x = 0;
for (int j = max(k, i-DIG+1); j <= i; j++) x = x*10 + s[j] - '0';
a.push_back(x); } trim(); }
friend istream& operator>>(istream &in, BigInt &v) {
string s; in >> s; v.read(s); return in; }
friend ostream& operator<<(ostream &out, const BigInt &v) {
if (v.sgn == -1 && !v.zero()) out << '-';
out << (v.a.empty() ? 0 : v.a.back());
for (int i = (int) v.a.size() - 2; i >= 0; --i)
out << setw(DIG) << setfill('0') << v.a[i];
return out; }
bool operator<(const BigInt &v) const { if (sgn != v.sgn) return sgn < v.sgn;
if (a.size() != v.a.size()) return a.size() * sgn < v.a.size() * v.sgn;
for (int i=(int)a.size()-1;i>=0;i--)
if (a[i]!=v.a[i]) return a[i]*sgn < v.a[i]*sgn; return 0; }
bool operator>(const BigInt &v) const { return v < *this; }
bool operator<=(const BigInt &v) const { return !(v < *this); }
bool operator>=(const BigInt &v) const { return !(*this < v); }
bool operator==(const BigInt &v) const { return !(*this < v) && !(v < *this); }
bool operator!=(const BigInt &v) const { return *this < v || v < *this; }
friend int __cmp(const BigInt& x, const BigInt& y) {
if (x.a.size() != y.a.size()) return x.a.size() < y.a.size() ? -1 : 1;
for (int i = (int) x.a.size() - 1; i >= 0; --i) if (x.a[i] != y.a[i])
return x.a[i] < y.a[i] ? -1 : 1; return 0; }
BigInt operator-() const { BigInt res = *this; if (zero()) return res;
res.sgn = -sgn; return res; }
void __add(const BigInt& v) { if (a.size() < v.a.size()) a.resize(v.a.size(), 0);
for (int i = 0, carry = 0; i < max(a.size(), v.a.size()) || carry; ++i) {
if (i == a.size()) a.push_back(0);
a[i] += carry + (i < (int) v.a.size() ? v.a[i] : 0); carry = a[i] >= BASE;
if (carry) a[i] -= BASE; } }
void __sub(const BigInt& v) {
for (int i = 0, carry = 0; i < (int) v.a.size() || carry; ++i) {
a[i] -= carry + (i < (int) v.a.size() ? v.a[i] : 0);
carry = a[i] < 0; if (carry) a[i] += BASE; } this->trim(); }
BigInt operator+=(const BigInt& v) { if (sgn == v.sgn) __add(v);
else if (__cmp(*this, v) >= 0) __sub(v);
else { BigInt vv = v; swap(*this, vv); __sub(vv); } return *this; }
BigInt operator-=(const BigInt& v) { if (sgn == v.sgn) {
if (__cmp(*this, v) >= 0) __sub(v);
else { BigInt vv = v; swap(*this, vv); __sub(vv); sgn = -sgn; } }
else __add(v); return *this; }
template< typename L, typename R >
typename enable_if<
is_convertible<L, BigInt>::value &&
is_convertible<R, BigInt>::value &&
is_lvalue_reference<R&&>::value,
BigInt>::type friend operator + (L&& l, R&& r) {
BigInt result(forward<L>(l));
result += r;
return result;
}
template< typename L, typename R >
typename enable_if<
is_convertible<L, BigInt>::value &&
is_convertible<R, BigInt>::value &&
is_rvalue_reference<R&&>::value,
BigInt>::type friend operator + (L&& l, R&& r) {
BigInt result(move(r));
result += l;
return result;
}
template< typename L, typename R >
typename enable_if<
is_convertible<L, BigInt>::value &&
is_convertible<R, BigInt>::value,
BigInt>::type friend operator - (L&& l, R&& r) {
BigInt result(forward<L>(l));
result -= r;
return result;
}
friend pair<BigInt, BigInt> divmod(const BigInt& a1, const BigInt& b1) {
ll norm = BASE / (b1.a.back()+1); BigInt a = a1.abs()*norm, b = b1.abs()*norm, q = 0, r = 0;
q.a.resize(a.a.size());
for (int i = a.a.size()-1; i >= 0; i--) { r *= BASE; r += a.a[i];
ll s1 = r.a.size() <= b.a.size() ? 0 : r.a[b.a.size()];
ll s2 = r.a.size() <= b.a.size() - 1 ? 0 : r.a[b.a.size() - 1];
ll d = ((ll) BASE * s1 + s2) / b.a.back(); r -= b * d;
while (r < 0) r += b, --d; q.a[i] = d; }
q.sgn = a1.sgn * b1.sgn; r.sgn = a1.sgn; q.trim(); r.trim();
auto res = make_pair(q, r / norm); if (res.second < 0) res.second += b1; return res; }
BigInt operator/(const BigInt &v) const { return divmod(*this, v).first; }
BigInt operator%(const BigInt &v) const { return divmod(*this, v).second; }
void operator/=(int v) { if (llabs(v) >= BASE) { *this /= BigInt(v); return; }
if (v < 0) sgn = -sgn, v = -v;
for (int i = (int) a.size()-1, rem = 0; i >= 0; --i) {
ll cur = a[i] + rem * (ll)BASE; a[i] = (int) (cur/v); rem = (int) (cur%v); } trim(); }
BigInt operator/(int v) const { if (llabs(v) >= BASE) return *this / BigInt(v);
BigInt res = *this; res /= v; return res; }
void operator/=(const BigInt &v) { *this = *this / v; }
ll operator%(ll v) const { assert(v < BASE); int m = 0;
for (int i = a.size() - 1; i >= 0; --i) m = (a[i] + m * (ll) BASE) % v;
return m * sgn; }
void operator*=(int v) {
if (llabs(v) >= BASE) { *this *= BigInt(v); return; }
if (v < 0) sgn = -sgn, v = -v;
for (int i = 0, carry = 0; i < a.size() || carry; ++i) {
if (i == a.size()) a.push_back(0);
ll cur = a[i] * (ll) v + carry;
carry = (int) (cur/BASE); a[i] = (int) (cur%BASE); } trim(); }
BigInt operator*(int v) const { if (llabs(v) >= BASE) return *this * BigInt(v);
BigInt res = *this; res *= v; return res; }
static vector<int> convert_base(const vector<int> &a, int old_digits, int new_digits) {
vector<ll> p(max(old_digits, new_digits) + 1);
p[0] = 1;
for (int i = 1; i < (int) p.size(); i++)
p[i] = p[i - 1] * 10;
vector<int> res;
ll cur = 0;
int cur_digits = 0;
for (int i = 0; i < (int) a.size(); i++) {
cur += a[i] * p[cur_digits];
cur_digits += old_digits;
while (cur_digits >= new_digits) {
res.push_back((ll)(cur % p[new_digits]));
cur /= p[new_digits];
cur_digits -= new_digits;
}
}
res.push_back((int) cur);
while (!res.empty() && !res.back())
res.pop_back();
return res;
}
void fft(vector<Cplx>& a, bool invert) const { int n = a.size();
for (int i = 1, j = 0; i < n; ++i) { int bit = n/2;
for (; j >= bit; bit /= 2) j -= bit; j += bit;
if (i < j) swap(a[i], a[j]); }
for (int len = 2; len <= n; len *= 2) {
ld ang = 2 * PI / len * (invert ? -1 : 1);
Cplx wlen = polar(1, ang);
for (int i = 0; i < n; i += len) { Cplx w(1);
for (int j = 0; j < len / 2; ++j) {
Cplx u = a[i + j], v = a[i + j + len / 2] * w;
a[i + j] = u + v; a[i + j + len / 2] = u - v; w *= wlen; } } }
if (invert) for (int i = 0; i < n; ++i) a[i] /= n; }
void multiply_fft(const vector<int> &a, const vector<int> &b, vector<int> &res) const {
vector<Cplx> fa(a.begin(), a.end()), fb(b.begin(), b.end());
int n = 1; while (n < max(a.size(), b.size())) n *= 2; n *= 2; fa.resize(n); fb.resize(n);
fft(fa, 0); fft(fb, 0); for (int i = 0; i < n; ++i) fa[i] *= fb[i]; fft(fa, 1);
res.resize(n); ll carry = 0;
for (int i=0; i<n; i++) { ll t = (ll)(fa[i].real()+0.5)+carry; carry = t/FBASE; res[i] = t%FBASE; } }
static inline int rev_incr(int a, int n) { int msk = n/2, cnt=0;
while ( a&msk ) { cnt++; a<<=1; }
a &= msk-1; a |= msk;
while ( cnt-- ) a >>= 1;
return a; }
static vector<Cplx> FFT(vector<Cplx> v, int dir=1) {
Cplx wm,w,u,t; int n = v.size(); vector<Cplx> V(n);
for (int k=0,a=0; k<n; ++k, a=rev_incr(a,n))
V[a] = v[k] / ld(dir>0 ? 1 : n);
for (int m=2; m<=n; m<<=1) {
wm = polar( (ld)1, dir*2*PI/m );
for (int k=0; k<n; k+=m) {
w = 1;
for (int j=0; j<m/2; ++j, w*=wm) {
u = V[k + j];
t = w * V[k + j + m/2];
V[k + j] = u + t;
V[k + j + m/2] = u - t;
} } } return V; }
static void convolution(const vector<int>& a, const vector<int>& b, vector<int>& c) {
int sz = a.size()+b.size()-1;
int n = 1<<int(ceil(log2(sz)));
vector<Cplx> av(n,0), bv(n,0), cv;
for (int i=0; i<a.size(); i++) av[i] = a[i];
for (int i=0; i<b.size(); i++) bv[i] = b[i];
cv = FFT(bv); bv = FFT(av);
for (int i=0; i<n; i++) av[i] = bv[i]*cv[i];
cv = FFT(av, -1);
c.resize(n); ll carry = 0;
for (int i=0; i<n; i++) { ll t = ll(cv[i].real()+0.5)+carry; carry = t/FBASE; c[i] = t%FBASE; } }
BigInt mul_simple(const BigInt &v) const { BigInt res; res.sgn = sgn * v.sgn;
res.a.resize(a.size() + v.a.size());
for (int i=0; i<a.size(); i++) if (a[i])
for (int j=0, carry=0; j<v.a.size() || carry; j++) {
ll cur = res.a[i + j] + (ll) a[i] * (j < v.a.size() ? v.a[j] : 0) + carry;
carry = (int) (cur / BASE); res.a[i + j] = (int) (cur % BASE); } res.trim(); return res; }
BigInt mul_fft(const BigInt& v) const { BigInt res;
convolution(convert_base(a, DIG, FDIG), convert_base(v.a, DIG, FDIG), res.a);
res.a = convert_base(res.a, FDIG, DIG); res.trim(); return res; }
void operator*=(const BigInt &v) { *this = *this * v; }
BigInt operator*(const BigInt &v) const {
if (a.size() * v.a.size() <= 100111) return mul_simple(v); return mul_fft(v); }
BigInt abs() const { BigInt res = *this; res.sgn *= res.sgn; return res; }
void trim() { while (!a.empty() && !a.back()) a.pop_back(); }
bool zero() const { return a.empty() || (a.size() == 1 && !a[0]); }
friend BigInt gcd(const BigInt &a, const BigInt &b) { return b.zero() ? a : gcd(b, a % b); }
};