-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRunPG.py
50 lines (41 loc) · 1.07 KB
/
RunPG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
from absl import app
from sls import Env, PGRunner
from sls.agents import *
from sls.NeuralNetPG import Network
_CONFIG = dict(
episodes=200,
screen_size=16,
minimap_size=16,
visualize=False,
train=False,
agent=PGAgent,
load_path='./results/220710_2015_train_PGAgent/6000.h5',
num_scores_average=50,
gamma=0.99,
file_format='.h5'
)
network = Network()
def main(unused_argv):
agent = _CONFIG['agent'](
train=_CONFIG['train'],
screen_size=_CONFIG['screen_size'],
network=network
)
env = Env(
screen_size=_CONFIG['screen_size'],
minimap_size=_CONFIG['minimap_size'],
visualize=_CONFIG['visualize']
)
runner = PGRunner(
agent=agent,
env=env,
train=_CONFIG['train'],
load_path=_CONFIG['load_path'],
num_scores_average=_CONFIG['num_scores_average'],
file_format=_CONFIG['file_format'],
network=network,
gamma=_CONFIG['gamma']
)
runner.run(episodes=_CONFIG['episodes'])
if __name__ == "__main__":
app.run(main)