-
-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathhello_world_pettingzoo.py
76 lines (56 loc) · 1.86 KB
/
hello_world_pettingzoo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
import numpy as np
from gym_microrts.petting_zoo_api import PettingZooMicroRTSGridModeSharedMemVecEnv
def softmax(x, axis=None):
x = x - x.max(axis=axis, keepdims=True)
y = np.exp(x)
return y / y.sum(axis=axis, keepdims=True)
def sample(logits):
# https://stackoverflow.com/a/40475357/6611317
p = softmax(logits, axis=1)
c = p.cumsum(axis=1)
u = np.random.rand(len(c), 1)
choices = (u < c).argmax(axis=1)
return choices.reshape(-1, 1)
def policy(observation):
# Get action mask
action_mask = observation["action_masks"]
action_mask = action_mask.reshape(-1, action_mask.shape[-1])
action_mask[action_mask == 0] = -9e8
# Sample action from action mask
action = np.concatenate(
(
sample(action_mask[:, 0:6]), # action type
sample(action_mask[:, 6:10]), # move parameter
sample(action_mask[:, 10:14]), # harvest parameter
sample(action_mask[:, 14:18]), # return parameter
# produce_direction parameter
sample(action_mask[:, 18:22]),
# produce_unit_type parameter
sample(action_mask[:, 22:29]),
# attack_target parameter
sample(action_mask[:, 29:]),
),
axis=1,
)
return action
def main():
opponents = []
render = False
env = PettingZooMicroRTSGridModeSharedMemVecEnv(2, 0, ai2s=opponents)
env.reset()
if render:
env.render()
for episode in range(100):
# Iterate over all of the agents
for agent in env.agent_iter():
if render:
env.render()
observation, reward, done, info = env.last()
action = policy(observation)
if done:
env.reset()
break
env.step(action)
env.close()
if __name__ == "__main__":
main()