-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMarketing Analytics HW2.py
273 lines (167 loc) · 5.66 KB
/
Marketing Analytics HW2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
#!/usr/bin/env python
# coding: utf-8
# In[3]:
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
from sklearn.cluster import KMeans
import matplotlib.pyplot as plt
import seaborn as sns
# In[6]:
df = pd.read_csv('transactions_n100000.csv')
df.head()
# In[7]:
#drop longtitude, latitude, ticket_id, order_timestamp
df = df.iloc[:, 2:5]
# In[8]:
df
# In[9]:
categorical_features = df['item_name']
categorical_features.unique()
# In[10]:
dummies = pd.get_dummies(categorical_features)
print(dummies)
# In[11]:
df1 = pd.concat([df, dummies], axis=1)
del df1["item_name"]
df1
# In[12]:
df1[["location", "item_count"]] = StandardScaler().fit_transform(df1[["location", "item_count"]])
df1
# In[60]:
from sklearn.mixture import GaussianMixture
from sklearn.decomposition import PCA
from scipy.stats import multivariate_normal as mvn
sklearn_pca = PCA(n_components = 2)
Y_sklearn = sklearn_pca.fit_transform(df1)
clusters = 3
gmm = GaussianMixture(n_components=clusters, covariance_type='full').fit(Y_sklearn)
prediction_gmm = gmm.predict(Y_sklearn)
probs = gmm.predict_proba(Y_sklearn)
centers = np.zeros((clusters,2))
for i in range(clusters):
density = mvn(cov=gmm.covariances_[i], mean=gmm.means_[i]).logpdf(Y_sklearn)
centers[i, :] = Y_sklearn[np.argmax(density)]
plt.figure(figsize = (10,8))
plt.scatter(Y_sklearn[:, 0], Y_sklearn[:, 1],c=prediction_gmm ,s=50, cmap='viridis')
plt.scatter(centers[:, 0], centers[:, 1],c='black', s=300, alpha=0.6);
# In[64]:
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse
from sklearn.mixture import GaussianMixture as GMM
from sklearn import metrics
from sklearn.model_selection import train_test_split
from matplotlib import rcParams
rcParams['figure.figsize'] = 16, 8
def draw_ellipse(position, covariance, ax=None, **kwargs):
"""Draw an ellipse with a given position and covariance"""
ax = ax or plt.gca()
# Convert covariance to principal axes
if covariance.shape == (2, 2):
U, s, Vt = np.linalg.svd(covariance)
angle = np.degrees(np.arctan2(U[1, 0], U[0, 0]))
width, height = 2 * np.sqrt(s)
else:
angle = 0
width, height = 2 * np.sqrt(covariance)
# Draw the Ellipse
for nsig in range(1, 4):
ax.add_patch(Ellipse(position, nsig * width, nsig * height,
angle, **kwargs))
def plot_gmm(gmm, X, label=True, ax=None):
ax = ax or plt.gca()
labels = gmm.fit(X).predict(X)
if label:
ax.scatter(X[:, 0], X[:, 1], c=labels, s=40, cmap='viridis', zorder=2)
else:
ax.scatter(X[:, 0], X[:, 1], s=40, zorder=2)
w_factor = 0.2 / gmm.weights_.max()
for pos, covar, w in zip(gmm.means_, gmm.covariances_, gmm.weights_):
draw_ellipse(pos, covar, alpha=w * w_factor)
plt.title("GMM with %d components"%len(gmm.means_), fontsize=(20))
plt.xlabel("U.A.")
plt.ylabel("U.A.")
def SelBest(arr:list, X:int)->list:
'''
returns the set of X configurations with shorter distance
'''
dx=np.argsort(arr)[:X]
return arr[dx]
# In[65]:
plot_gmm(gmm, Y_sklearn)
# In[68]:
#But do we really want to use 3 clusters?
n_clusters=np.arange(2, 6)
bics=[]
bics_err=[]
iterations=6
for n in n_clusters:
tmp_bic=[]
for _ in range(iterations):
gmm=GMM(n, n_init=2).fit(Y_sklearn)
tmp_bic.append(gmm.bic(Y_sklearn))
val=np.mean(SelBest(np.array(tmp_bic), int(iterations/5)))
err=np.std(tmp_bic)
bics.append(val)
bics_err.append(err)
# In[69]:
plt.errorbar(n_clusters,bics, yerr=bics_err, label='BIC')
plt.title("BIC Scores", fontsize=20)
plt.xticks(n_clusters)
plt.xlabel("N. of clusters")
plt.ylabel("Score")
plt.legend()
# In[70]:
plt.errorbar(n_clusters, np.gradient(bics), yerr=bics_err, label='BIC')
plt.title("Gradient of BIC Scores", fontsize=20)
plt.xticks(n_clusters)
plt.xlabel("N. of clusters")
plt.ylabel("grad(BIC)")
plt.legend()
# In[ ]:
#Since we want to maximize the gradient as reasonably as possibly without using too many clusters (to make things simpler),
#then 2 clusters is the best.
# In[71]:
clusters = 2
gmm = GaussianMixture(n_components=clusters, covariance_type='full').fit(Y_sklearn)
prediction_gmm = gmm.predict(Y_sklearn)
probs = gmm.predict_proba(Y_sklearn)
centers = np.zeros((clusters,2))
for i in range(clusters):
density = mvn(cov=gmm.covariances_[i], mean=gmm.means_[i]).logpdf(Y_sklearn)
centers[i, :] = Y_sklearn[np.argmax(density)]
plt.figure(figsize = (10,8))
plt.scatter(Y_sklearn[:, 0], Y_sklearn[:, 1], c=prediction_gmm, s=50, cmap='viridis')
plt.scatter(centers[:, 0], centers[:, 1], c='black', s=300, alpha=0.6);
# In[72]:
plot_gmm(gmm, Y_sklearn)
# In[33]:
sklearn_pca.components_
# In[61]:
def visualize_components(components, feature_x, n_components, ):
fig = plt.figure(figsize=(15, 15))
ax = plt.subplot()
ax.imshow(components.T)
ax.set_yticks(np.arange(0, len(feature_x)))
ax.set_yticklabels(feature_x, fontsize=15)
ax.set_xticks(np.arange(0, n_components))
ax.set_xticklabels([i + 1 for i in range(n_components)], fontsize=15)
ax.set_xlabel('Components', fontsize=15)
ax.set_ylabel('Features', fontsize=15)
pos = ax.imshow(components.T, interpolation='none')
fig.colorbar(pos, ax=ax)
plt.show()
# In[62]:
visualize_components(sklearn_pca.components_, df1.columns, 2)
# In[73]:
df1['pred'] = pd.Series(prediction_gmm, index=df1.index)
df1
# In[96]:
df = pd.read_csv('transactions_n100000.csv')
df_final = df.copy()
df_final['pred'] = df1['pred']
df_final
# In[97]:
two_cluster_pred = df_final.to_csv('two_cluster_pred.csv', index = True)
# In[ ]: