-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathseismSim.m
85 lines (78 loc) · 2.64 KB
/
seismSim.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
function [y,t] = seismSim(sigma,fn,zeta,f,T90,eps,tn)
% [y,t] = seismSim(sigma,fn,zeta,f,T90,eps,tn) generate one time series
% corresponding to acceleration record from a seismometer.
% The function requires 7 inputs, and gives 2 outputs. The time series is
% generated in two steps: First, a stationary process is created based on
% the Kanai-Tajimi spectrum, then an envelope function is used to transform
% this stationary time series into a non-stationary record. For more
% information, see [1-3].
%
% References
%
% [1] Lin, Y. K., & Yong, Y. (1987). Evolutionary Kanai-Tajimi earthquake models. Journal of engineering mechanics, 113(8), 1119-1137.
% [2] Rofooei, F. R., Mobarake, A., & Ahmadi, G. (2001).
% Generation of artificial earthquake records with a nonstationary
% Kanai-Tajimi model. Engineering Structures, 23(7), 827-837.
% [3] Guo, Y., & Kareem, A. (2016).
% System identification through nonstationary data using Time-requency Blind
% Source Separation. Journal of Sound and Vibration, 371, 110-131.
%
%
% INPUTS
%
% sigma: [1 x 1 ]: standard deviation of the excitation.
% fn: [1 x 1 ]: dominant frequency of the earthquake excitation (Hz).
% zeta: [1 x 1 ]: bandwidth of the earthquake excitation.
% f: [ 1 x M ]: frequency vector for the Kanai-tajimi spectrum.
% T90: [1 x 1 ]: value at 90 percent of the duration.
% eps: [1 x 1 ]: normalized duration time when ground motion achieves peak.
% tn: [1 x 1 ]: duration of ground motion.
%
%
% OUTPUTS
%
% y: size: [ 1 x N ] : Simulated aceleration record
% t: size: [ 1 x N ] : time
%
%
% EXAMPLE:
%
% f = linspace(0,40,2048);
% zeta = 0.3;
% sigma = 0.9;
% fn =5;
% T90 = 0.3;
% eps = 0.4;
% tn = 30;
% [y,t] = seismSim(sigma,fn,zeta,f,T90,eps,tn);
% figure
% plot(t,y);axis tight
% xlabel('time(s)');
% ylabel('ground acceleration (m/s^2)')
%
% see also fitKT.m
% Author: Etienne Cheynet - modified: 23/04/2016
%% Initialisation
w = 2*pi.*f;
fs = f(end); dt = 1/fs;
f0= median(diff(f));
Nfreq = numel(f);
t = 0:dt:dt*(Nfreq-1);
%% Generation of the spectrum S
fn = fn *2*pi; % transformation in rad;
s0 = 2*zeta*sigma.^2./(pi.*fn.*(4*zeta.^2+1));
A = fn.^4+(2*zeta*fn*w).^2;
B = (fn.^2-w.^2).^2+(2*zeta*fn.*w).^2;
S = s0.*A./B; % single sided PSD
%% Time series generation - Monte Carlo simulation
A = sqrt(2.*S.*f0);
B =cos(w'*t + 2*pi.*repmat(rand(Nfreq,1),[1,Nfreq]));
x = A*B; % stationary process
%% Envelop function E
b = -eps.*log(T90)./(1+eps.*(log(T90)-1));
c = b./eps;
a = (exp(1)./eps).^b;
E = a.*(t./tn).^b.*exp(-c.*t./tn);
%% Envelop multiplied with stationary process to get y
y = x.*E;
end