Skip to content

Latest commit

 

History

History
106 lines (89 loc) · 3.41 KB

README.md

File metadata and controls

106 lines (89 loc) · 3.41 KB

Image-Classifier

Project created as partof the Udacity Nanodegree program "Introduction to Python for AI Programmers"

How to use this app:

Set up enviroment

  1. Install Anaconda
  2. Verify that Conda has been properly installed by typing the command:
    conda -V
    In response, you should get a similar output:
    conda 23.1.0
  3. Go to repo directory: cd \myownpath\Image-Classifier
  4. Create a new environment from a yaml file by entering the command:
    conda env create -f torchvision_env.yml
    The environment file contains pytorch library and CUDA drivers.
  5. Activate the newly created environment by typing:
    conda activate torchvision_env

Training the neural network

In order to train an image classifier use the train.py script on a particular image dataset. The script takes the image dataset folder as an input and returns a trained neural network as a checkpoint file, which also contains information about the training state and model performance.
The script currently supports three different convolutional neural network models: AlexNet, DenseNet and VGG-16.

Features:

  • The script automatically detects the number of classes and rebuilds the network classfier.
  • Various options for training are available.

Positional arguments:

  • Train image dataset directory:
    dir
    File structure has to be formated as follows:
  • image_folder\train\
    • \category_1\
      • \image_1.jpeg
      • \image_2.jpeg
      • ...
      • \image_n.jpeg
    • \category_2\
      • ...
    • \category_n\
      • ...
  • image_folder\test\
    • \category_1\
      • \image_1.jpeg
      • \image_2.jpeg
      • ...
      • \image_n.jpeg
    • \category_2\
      • ...
    • \category_n\
      • ...
  • image_folder\valid\
    • \category_1\
      • \image_1.jpeg
      • \image_2.jpeg
      • ...
      • \image_n.jpeg
    • \category_2\
      • ...
    • \category_n\
      • ...

Use example:
python train.py flower_data

Optional arguments:

  • Display script help:
    -h, --help
    Example usage:
    python train.py -h

  • Select convolutional neural network model architecture: AlexNet, DenseNet or VGG-16
    --arch {alexnet, densenet, vgg16}
    Use example:
    python train.py flower_data --arch densenet

  • Select learning rate (optimizers step size on each iteration): $\alpha$ < 1
    Default value: $\alpha$ = 0.001
    -lr, --learning_rate
    Use example:
    python train.py flower_data -lr 0.005

  • Set the number of hidden units in a classifier (default: 512)
    -hu, --hidden_units
    Use example:
    python train.py flower_data --hidden_units 256

  • Choose the number of epochs to train (default: 20)
    -e, --epochs
    Example usage:
    python train.py flower_data -e 50

  • Set directory to save checkpoint file (default: cwd\checkpoint.pth)
    -s, --save_dir
    The file name must end with the extension .pt or .pth
    Use example:
    python train.py flower_data --save_dir C:\Users\Tomasz\Desktop\Image-Classifier\alexnet.pt

  • Accelerate learning by moving computation to the GPU
    --gpu
    Example usage:
    python train.py flower_data --gpu