-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathadv_Shape_Train_MAS.py
223 lines (190 loc) · 8.81 KB
/
adv_Shape_Train_MAS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import time
import random
import datetime
import numpy as np
from math import sqrt
import torch.autograd
from skimage import io
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
import torchvision.utils as vutils
from utils import initialize_weights
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
import torchvision.transforms as standard_transforms
working_path = os.path.dirname(os.path.abspath(__file__))
#######################################################
from datasets import Building_Mas as RS
from models.ED_FCN import ED_FCN as Seg_Net
#from models.FCN_SR import FCN_SR as Seg_Net
from models.discriminator import FCDiscriminator as D_Net
NET_NAME = 'ED_FCN_adv'
DATA_NAME = 'MAS'
#######################################################
from utils.loss import CrossEntropyLoss2d, weighted_BCE_logits
from utils.utils import binary_accuracy as accuracy
from utils.utils import intersectionAndUnion, AverageMeter
args = {
'train_batch_size': 8,
'val_batch_size': 1,
'train_crop_size': 512,
'num_crops': 20,
'val_crop_size': 2560,
'lr': 1e-3,
'lr_D': 5e-4,
'epochs': 50,
'gpu': True,
'weight_decay': 5e-4,
'momentum': 0.9,
'print_freq': 100,
'pred_dir': os.path.join(working_path, 'results', DATA_NAME),
'chkpt_dir': os.path.join(working_path, 'checkpoints', DATA_NAME),
'log_dir': os.path.join(working_path, 'logs', DATA_NAME, NET_NAME),
'load_path': os.path.join(working_path, 'checkpoints', DATA_NAME, 'xxx.pth')
}
if not os.path.exists(args['log_dir']): os.makedirs(args['log_dir'])
if not os.path.exists(args['chkpt_dir']): os.makedirs(args['chkpt_dir'])
if not os.path.exists(args['pred_dir']): os.makedirs(args['pred_dir'])
def lr_poly(base_lr, iter, max_iter, power):
return base_lr * ((1 - float(iter) / max_iter) ** (power))
def adjust_lr(optimizer, i_iter, all_iter):
lr = lr_poly(args['lr'], i_iter, all_iter, 0.95)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def adjust_lr_D(optimizer, i_iter, all_iter):
lr = lr_poly(args['lr_D'], i_iter, all_iter, 0.95)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def soft_argmax(seg_map):
assert seg_map.dim()==4
# alpha is here to make the largest element really big, so it
# would become very close to 1 after softmax
alpha = 1000.0
b,c,h,w, = seg_map.shape
soft_max = F.softmax(seg_map*alpha,dim=1)
return soft_max
def main():
model_D = D_Net(1).cuda()
model_D.train()
model_seg = Seg_Net(in_channels=3, num_classes=1).cuda()
train_set = RS.RS('train', random_crop=True, crop_nums=args['num_crops'], crop_size=args['train_crop_size'], random_flip=True) #Mas
val_set = RS.RS('val') #MAS
train_loader = DataLoader(train_set, batch_size=args['train_batch_size'], num_workers=4, shuffle=True)
val_loader = DataLoader(val_set, batch_size=args['val_batch_size'], num_workers=4, shuffle=False)
optimizer = optim.Adam(model_seg.parameters(), lr=args['lr'], betas=(0.9, 0.99))
optimizer.zero_grad()
optimizer_D = optim.Adam(model_D.parameters(), lr=args['lr_D'], betas=(0.9, 0.99))
optimizer_D.zero_grad()
bce_loss = torch.nn.BCEWithLogitsLoss()
MSE_loss = torch.nn.MSELoss().cuda()
criterion = CrossEntropyLoss2d().cuda()
# labels for adversarial training
pred_label = 0
GT_label = 1
iters_per_epoch = len(train_loader)
all_iters = iters_per_epoch*args['epochs']
adv_loss_meter = AverageMeter()
seg_loss_meter = AverageMeter()
Dpred_loss_meter = AverageMeter()
Dgt_loss_meter = AverageMeter()
bestF=0.0
bestacc=0.0
bestIoU=0.0
for curr_epoch in range(args['epochs']):
model_seg.train()
for i_iter, data in enumerate(train_loader):
imgs, labels = data
curr_iter = i_iter + curr_epoch*iters_per_epoch
imgs = imgs.cuda().float()
labels = labels.cuda().float().unsqueeze(1)
optimizer.zero_grad()
optimizer_D.zero_grad()
adjust_lr(optimizer, curr_iter, all_iters)
adjust_lr_D(optimizer_D, curr_iter, all_iters)
### train G
# freeze D
for param in model_D.parameters():
param.requires_grad = False
out = model_seg(imgs)
out_bn = F.sigmoid(out) #soft_argmax(out)
#aux_bn = F.sigmoid(aux)
loss_seg = MSE_loss(out_bn, labels) *5
D_out_pred = model_D(out_bn)
D_out_GT = model_D(labels)
loss_adv = MSE_loss(F.sigmoid(D_out_pred), F.sigmoid(D_out_GT))
loss = loss_seg + loss_adv
loss.backward()
optimizer.step()
seg_loss_meter.update(loss_seg.cpu().detach().numpy())
adv_loss_meter.update(loss_adv.cpu().detach().numpy())
### train D
# unfreeze D
for param in model_D.parameters():
param.requires_grad = True
# train D with prediction map
D_out = model_D(out_bn.detach())
loss_D = bce_loss(D_out, torch.FloatTensor(D_out.data.size()).fill_(pred_label).cuda())
loss_D.backward()
Dpred_loss_meter.update(loss_D.cpu().detach().numpy())
# train D with GT map
D_out = model_D(labels)
loss_D = bce_loss(D_out, torch.FloatTensor(D_out.data.size()).fill_(GT_label).cuda())
loss_D.backward()
Dgt_loss_meter.update(loss_D.cpu().detach().numpy())
optimizer_D.step()
if i_iter%args['print_freq'] == 0:
print('Iter %d/%d, Seg_loss: %.2f, adv_loss: %.2f, Dpred_loss: %.2f, Dgt_loss: %.2f'
%(i_iter, iters_per_epoch, seg_loss_meter.val, adv_loss_meter.val, Dpred_loss_meter.val, Dgt_loss_meter.val)) #aux_loss: %.2f, aux_loss_meter.val,
curr_epoch += 1
val_F, val_acc, val_IoU, val_loss = validate(val_loader, model_seg, padding_rate=8)
if val_F>bestF:
bestF=val_F
bestacc=val_acc
bestIoU=val_IoU
torch.save(model_seg.state_dict(), os.path.join(args['chkpt_dir'], NET_NAME+'_e%d_OA%.2f_F%.2f_IoU%.2f.pth'%(curr_epoch, val_acc*100, val_F*100, val_IoU*100)))
print('[epoch %d] [lr %f] [Val loss: %.2f Acc %.2f F1 score: %.2f IoU %.2f]' % (curr_epoch, optimizer.param_groups[0]['lr'], val_loss, val_acc*100, val_F*100, val_IoU*100))
print('Total time: %.1fs, Best rec: Val Acc %.2f F %.2f' %(time.time()-start, bestacc*100, bestF*100))
print('Training finished.')
def loss_calc(outputs, labels):
criterion = torch.nn.BCEWithLogitsLoss()
#criterion = CrossEntropyLoss2d().cuda()
return criterion(outputs, labels)
def validate(val_loader, model_seg, padding_rate=False, save_pred=True):
# the following code is written assuming that batch size is 1
model_seg.eval()
val_loss = AverageMeter()
F1_meter = AverageMeter()
IoU_meter = AverageMeter()
Acc_meter = AverageMeter()
for vi, data in enumerate(val_loader):
imgs, labels = data
imgs = imgs.cuda().float()
if padding_rate:
padding_pix = imgs.size()[-1]%padding_rate /2
padding_pix = [np.floor(padding_pix).astype(int), np.ceil(padding_pix).astype(int), np.floor(padding_pix).astype(int), np.ceil(padding_pix).astype(int)]
padding_layer = nn.ReflectionPad2d(padding_pix).cuda()
imgs = padding_layer(imgs)
labels = labels.cuda().float().unsqueeze(1)
with torch.no_grad():
out = model_seg(imgs)
if padding_rate: out = out[:,:, padding_pix[0]:-padding_pix[1], padding_pix[2]:-padding_pix[3]]
loss = loss_calc(out, labels)
out_bn = F.sigmoid(out)
val_loss.update(loss.cpu().detach().numpy())
preds = out_bn.cpu().detach().numpy()
labels = labels.cpu().detach().numpy()
for (pred, label) in zip(preds, labels):
acc, precision, recall, F1, IoU = accuracy(pred, label)
F1_meter.update(F1)
Acc_meter.update(acc)
IoU_meter.update(IoU)
if save_pred and vi==0:
pred_color = RS.Index2Color(preds[0].squeeze())
io.imsave(os.path.join(args['pred_dir'], NET_NAME+'.png'), pred_color)
print('Prediction saved!')
return F1_meter.avg, Acc_meter.avg, IoU_meter.avg, val_loss.avg
if __name__ == '__main__':
start = time.time()
main()