-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmetrics_on_folder.py
84 lines (66 loc) · 3.13 KB
/
metrics_on_folder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import random
import os
import json
import glob
CREATE_ANNOS = True
CALCULATE_METRICS = True
THS = [0.99, 0.98, 0.95]
dstDir = '/mnt/datos/custom_datasets/simulacro/no_guns/Simulacro_guns_annos'
uris = glob.glob('/media/datos/shared_datasets/guns_granada/Test/*')
# def create_annos(cfg, dstPath, uris):
#
if CREATE_ANNOS:
os.environ["CUDA_VISIBLE_DEVICES"] = "2"
from detectron2.utils.logger import setup_logger
setup_logger()
import cv2 as cv
from detectron2.engine import DefaultPredictor
from detectron2.config import get_cfg
cfg = get_cfg()
if True:
cfg.merge_from_file("../../build/configs/COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml")
cfg.MODEL.WEIGHTS = "detectron2://COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl" # initialize from model zoo
else:
cfg.merge_from_file("../../build/configs/COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x.yaml")
cfg.MODEL.WEIGHTS = "detectron2://COCO-Detection/faster_rcnn_X_101_32x8d_FPN_3x/139173657/model_final_68b088.pkl" # initialize from model zoo
cfg.INPUT.MAX_SIZE_TEST = 2500
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1
cfg.DATALOADER.NUM_WORKERS = 2
cfg.MODEL.WEIGHTS = "/mnt/datos/experiments/guns_detection/faster_rcnn_R_50_FPN_1x[LR=0.002][('guns_granada_train')]FROM[faster_rcnn_R_50_FPN_1x[LR=0.002][('guns_edgecase',)]]/model_final.pth"
predictor = DefaultPredictor(cfg)
for uri in uris[:]:
print(uri)
cap = cv.VideoCapture(uri)
frameIdx = 0
imagesAnnos = []
while True:
for i in range(1):
ret, img = cap.read()
if not ret or not cap.isOpened():
break
preds = predictor(img)["instances"].to("cpu")
bboxes = [b.numpy().tolist() for b in preds.pred_boxes] if preds.pred_boxes else []
scores = preds.scores.numpy().tolist()
for i in range(len(bboxes)):
bboxes[i].append(scores[i])
imagesAnnos.append({'frameIdx': frameIdx, 'bboxes': bboxes})
frameIdx += 1
if frameIdx % 10 == 0:
print(frameIdx)
with open(os.path.join(dstDir, os.path.splitext(os.path.basename(uri))[0]) + '_annos.json', 'w') as f:
print(imagesAnnos)
json.dump(imagesAnnos, f)
if CALCULATE_METRICS:
for th in THS:
metrics = {}
for uri in uris[:]:
basename = os.path.splitext(os.path.basename(uri))[0]
with open(os.path.join(dstDir, basename) + '_annos.json') as f:
imagesAnnos = json.load(f)
numDetections = len([bbox for anno in imagesAnnos for bbox in anno['bboxes'] if bbox[4] >= th])
metrics[basename] = {'FP': numDetections, 'NUM_FRAMES': len(imagesAnnos)}
with open(os.path.join(dstDir, f'metrics_summary_th-{th}.json'), 'w') as f:
json.dump(metrics, f)
detailList = ', '.join([f"{v['FP']}" for k, v in metrics.items()])
numFrames = sum([v['NUM_FRAMES'] for k, v in metrics.items()])
print(f"FP{th}: {sum([m['FP'] for m in metrics.values()])}/{numFrames} ({detailList})")