-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathacousticTrackingDataset.py
1179 lines (1016 loc) · 46.1 KB
/
acousticTrackingDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
"""
Definition of several array geometries and the AcousticScene class to store everything needed to simulate the
trajectories and the DOA estimation results.
Pytorch datasets for sound source signals and for AcousticScenes with random trajectories and with the LOCATA
dataset recordings.
File name: acousticTrackingDataset.py
Author: David Diaz-Guerra
Date creation: 03/2022
Python Version: 3.8.1
Pytorch Version: 1.8.1
"""
import numpy as np
import os
import re
import copy
from collections import namedtuple
from torch.utils.data import Dataset
import torch
import scipy
import scipy.io.wavfile
import soundfile
import pandas
import warnings
import matplotlib.pyplot as plt
from matplotlib import animation
from mpl_toolkits.mplot3d import Axes3D
import webrtcvad
from itertools import permutations
from utils import rms_angular_error_deg
import gpuRIR
#gpuRIR.activateLUT(False)
#gpuRIR.activateMixedPrecision(True)
# %% Util functions
def acoustic_power(s):
""" Acoustic power of after removing the silences.
"""
w = 512 # Window size for silent detection
o = 256 # Window step for silent detection
# Window the input signal
s = np.ascontiguousarray(s)
sh = (s.size - w + 1, w)
st = s.strides * 2
S = np.lib.stride_tricks.as_strided(s, strides=st, shape=sh)[0::o]
window_power = np.mean(S ** 2, axis=-1)
th = 0.01 * window_power.max() # Threshold for silent detection
return np.mean(window_power[np.nonzero(window_power > th)])
def cart2sph(cart):
xy2 = cart[:,0]**2 + cart[:,1]**2
sph = np.zeros_like(cart)
sph[:,0] = np.sqrt(xy2 + cart[:,2]**2)
sph[:,1] = np.arctan2(np.sqrt(xy2), cart[:,2]) # Elevation angle defined from Z-axis down
sph[:,2] = np.arctan2(cart[:,1], cart[:,0])
return sph
# %% Util classes
class Parameter:
""" Random parammeter class.
You can indicate a constant value or a random range in its constructor and then
get a value acording to that with getValue(). It works with both scalars and vectors.
"""
def __init__(self, *args):
if len(args) == 1:
self.random = False
self.value = np.array(args[0])
self.min_value = None
self.max_value = None
elif len(args) == 2:
self. random = True
self.min_value = np.array(args[0])
self.max_value = np.array(args[1])
self.value = None
else:
raise Exception('Parammeter must be called with one (value) or two (min and max value) array_like parammeters')
def getValue(self):
if self.random:
return self.min_value + np.random.random(self.min_value.shape) * (self.max_value - self.min_value)
else:
return self.value
# Named tuple with the characteristics of a microphone array and definitions of the LOCATA arrays:
ArraySetup = namedtuple('ArraySetup', 'arrayType, orV, mic_pos, mic_orV, mic_pattern')
dicit_array_setup = ArraySetup(arrayType='planar',
orV = np.array([0.0, 1.0, 0.0]),
mic_pos = np.array((( 0.96, 0.00, 0.00),
( 0.64, 0.00, 0.00),
( 0.32, 0.00, 0.00),
( 0.16, 0.00, 0.00),
( 0.08, 0.00, 0.00),
( 0.04, 0.00, 0.00),
( 0.00, 0.00, 0.00),
( 0.96, 0.00, 0.32),
(-0.04, 0.00, 0.00),
(-0.08, 0.00, 0.00),
(-0.16, 0.00, 0.00),
(-0.32, 0.00, 0.00),
(-0.64, 0.00, 0.00),
(-0.96, 0.00, 0.00),
(-0.96, 0.00, 0.32))),
mic_orV = np.tile(np.array([[0.0, 1.0, 0.0]]), (15,1)),
mic_pattern = 'omni'
)
dummy_array_setup = ArraySetup(arrayType='planar',
orV = np.array([0.0, 1.0, 0.0]),
mic_pos = np.array(((-0.079, 0.000, 0.000),
(-0.079, -0.009, 0.000),
( 0.079, 0.000, 0.000),
( 0.079, -0.009, 0.000))),
mic_orV = np.array(((-1.0, 0.0, 0.0),
(-1.0, 0.0, 0.0),
( 1.0, 0.0, 0.0),
( 1.0, 0.0, 0.0))),
mic_pattern = 'omni'
)
benchmark2_array_setup = ArraySetup(arrayType='3D',
orV = np.array([0.0, 1.0, 0.0]),
mic_pos = np.array(((-0.028, 0.030, -0.040),
( 0.006, 0.057, 0.000),
( 0.022, 0.022, -0.046),
(-0.055, -0.024, -0.025),
(-0.031, 0.023, 0.042),
(-0.032, 0.011, 0.046),
(-0.025, -0.003, 0.051),
(-0.036, -0.027, 0.038),
(-0.035, -0.043, 0.025),
( 0.029, -0.048, -0.012),
( 0.034, -0.030, 0.037),
( 0.035, 0.025, 0.039))),
mic_orV = np.array(((-0.028, 0.030, -0.040),
( 0.006, 0.057, 0.000),
( 0.022, 0.022, -0.046),
(-0.055, -0.024, -0.025),
(-0.031, 0.023, 0.042),
(-0.032, 0.011, 0.046),
(-0.025, -0.003, 0.051),
(-0.036, -0.027, 0.038),
(-0.035, -0.043, 0.025),
( 0.029, -0.048, -0.012),
( 0.034, -0.030, 0.037),
( 0.035, 0.025, 0.039))),
mic_pattern = 'omni'
)
eigenmike_array_setup = ArraySetup(arrayType='3D',
orV = np.array([0.0, 1.0, 0.0]),
mic_pos = np.array((( 0.000, 0.039, 0.015),
(-0.022, 0.036, 0.000),
( 0.000, 0.039, -0.015),
( 0.022, 0.036, 0.000),
( 0.000, 0.022, 0.036),
(-0.024, 0.024, 0.024),
(-0.039, 0.015, 0.000),
(-0.024, 0.024, 0.024),
( 0.000, 0.022, -0.036),
( 0.024, 0.024, -0.024),
( 0.039, 0.015, 0.000),
( 0.024, 0.024, 0.024),
(-0.015, 0.000, 0.039),
(-0.036, 0.000, 0.022),
(-0.036, 0.000, -0.022),
(-0.015, 0.000, -0.039),
( 0.000, -0.039, 0.015),
( 0.022, -0.036, 0.000),
( 0.000, -0.039, -0.015),
(-0.022, -0.036, 0.000),
( 0.000, -0.022, 0.036),
( 0.024, -0.024, 0.024),
( 0.039, -0.015, 0.000),
( 0.024, -0.024, -0.024),
( 0.000, -0.022, -0.036),
(-0.024, -0.024, -0.024),
(-0.039, -0.015, 0.000),
(-0.024, -0.024, 0.024),
( 0.015, 0.000, 0.039),
( 0.036, 0.000, 0.022),
( 0.036, 0.000, -0.022),
( 0.015, 0.000, -0.039))),
mic_orV = np.array((( 0.000, 0.039, 0.015),
(-0.022, 0.036, 0.000),
( 0.000, 0.039, -0.015),
( 0.022, 0.036, 0.000),
( 0.000, 0.022, 0.036),
(-0.024, 0.024, 0.024),
(-0.039, 0.015, 0.000),
(-0.024, 0.024, 0.024),
( 0.000, 0.022, -0.036),
( 0.024, 0.024, -0.024),
( 0.039, 0.015, 0.000),
( 0.024, 0.024, 0.024),
(-0.015, 0.000, 0.039),
(-0.036, 0.000, 0.022),
(-0.036, 0.000, -0.022),
(-0.015, 0.000, -0.039),
( 0.000, -0.039, 0.015),
( 0.022, -0.036, 0.000),
( 0.000, -0.039, -0.015),
(-0.022, -0.036, 0.000),
( 0.000, -0.022, 0.036),
( 0.024, -0.024, 0.024),
( 0.039, -0.015, 0.000),
( 0.024, -0.024, -0.024),
( 0.000, -0.022, -0.036),
(-0.024, -0.024, -0.024),
(-0.039, -0.015, 0.000),
(-0.024, -0.024, 0.024),
( 0.015, 0.000, 0.039),
( 0.036, 0.000, 0.022),
( 0.036, 0.000, -0.022),
( 0.015, 0.000, -0.039))),
mic_pattern = 'omni'
)
miniDSP_array_setup = ArraySetup(arrayType='planar',
orV = np.array([0.0, 0.0, 1.0]),
mic_pos = np.array((( 0.0000, 0.0430, 0.000),
( 0.0372, 0.0215, 0.000),
( 0.0372, -0.0215, 0.000),
( 0.0000, -0.0430, 0.000),
(-0.0372, -0.0215, 0.000),
(-0.0372, 0.0215, 0.000))),
mic_orV = np.array(((0.0, 0.0, 1.0),
(0.0, 0.0, 1.0),
(0.0, 0.0, 1.0),
(0.0, 0.0, 1.0),
(0.0, 0.0, 1.0),
(0.0, 0.0, 1.0))),
mic_pattern = 'omni'
)
class AcousticScene:
""" Acoustic scene class.
It contains everything needed to simulate a moving sound source moving recorded
with a microphone array in a reverberant room.
It can also store the results from the DOA estimation.
"""
def __init__(self, room_sz, T60, beta, SNR, array_setup, mic_pos, source_signal, fs, traj_pts, timestamps,
trajectory, t, DOA, n_sources=1):
assert ((isinstance(source_signal, list) or isinstance(source_signal, tuple)) and len(source_signal)==n_sources)
assert ((isinstance(traj_pts, list) or isinstance(traj_pts, tuple)) and len(traj_pts)==n_sources)
assert ((isinstance(trajectory, list) or isinstance(trajectory, tuple)) and len(trajectory)==n_sources)
assert ((isinstance(DOA, list) or isinstance(DOA, tuple)) and len(DOA)==n_sources)
self.room_sz = room_sz # Room size
self.T60 = T60 # Reverberation time of the simulated room
self.beta = beta # Reflection coefficients of the walls of the room (make sure it corresponds with T60)
self.SNR = SNR # Signal to (omnidirectional) Noise Ration to simulate
self.array_setup = array_setup # Named tuple with the characteristics of the array
self.mic_pos = mic_pos # Position of the center of the array
self.n_sources = n_sources # Number of sources
self.source_signal = [np.float32(source_signal[i]) for i in range(len(source_signal))] # Source signal
self.fs = fs # Sampling frequency of the source signal and the simulations
self.traj_pts = traj_pts # Trajectory points to simulate
self.timestamps = timestamps # Time of each simulation (it does not need to correspond with the DOA estimations)
self.trajectory = [np.float32(trajectory) for i in range(len(trajectory))] # Continuous trajectory
self.t = np.float32(t) # Continuous time
self.DOA = [np.float32(DOA[i]) for i in range(len(DOA))] # Continuous DOA
def simulate(self, separated_sources_simulation=False):
""" Get the array recording using gpuRIR to perform the acoustic simulations.
"""
if self.T60 == 0:
Tdiff = 0.1
Tmax = 0.1
nb_img = [1,1,1]
else:
Tdiff = gpuRIR.att2t_SabineEstimator(12, self.T60) # Use ISM until the RIRs decay 12dB
Tmax = gpuRIR.att2t_SabineEstimator(40, self.T60) # Use diffuse model until the RIRs decay 40dB
if self.T60 < 0.15: Tdiff = Tmax # Avoid issues with too short RIRs
nb_img = gpuRIR.t2n( Tdiff, self.room_sz )
nb_mics = len(self.mic_pos)
nb_traj_pts = len(self.traj_pts[0])
nb_gpu_calls = min(int(np.ceil( self.fs * Tdiff * nb_mics * nb_traj_pts * np.prod(nb_img) / 10e9 )), nb_traj_pts)
traj_pts_batch = np.ceil( nb_traj_pts / nb_gpu_calls * np.arange(0, nb_gpu_calls+1) ).astype(int)
if separated_sources_simulation:
mic_signals = np.zeros((self.n_sources+1, len(self.t), nb_mics))
else:
mic_signals = np.zeros((len(self.t), nb_mics))
ac_pow = np.zeros(self.n_sources)
for n in range(self.n_sources):
RIRs_list = [ gpuRIR.simulateRIR(self.room_sz, self.beta,
self.traj_pts[n][traj_pts_batch[0]:traj_pts_batch[1],:], self.mic_pos,
nb_img, Tmax, self.fs, Tdiff=Tdiff,
orV_rcv=self.array_setup.mic_orV, mic_pattern=self.array_setup.mic_pattern) ]
for i in range(1,nb_gpu_calls):
RIRs_list += [ gpuRIR.simulateRIR(self.room_sz, self.beta,
self.traj_pts[n][traj_pts_batch[i]:traj_pts_batch[i+1],:], self.mic_pos,
nb_img, Tmax, self.fs, Tdiff=Tdiff,
orV_rcv=self.array_setup.mic_orV, mic_pattern=self.array_setup.mic_pattern) ]
RIRs = np.concatenate(RIRs_list, axis=0)
mic_signals_sim = gpuRIR.simulateTrajectory(self.source_signal[n], RIRs, timestamps=self.timestamps, fs=self.fs)
if separated_sources_simulation:
mic_signals[n,...] = mic_signals_sim[0:len(self.t), :]
else:
mic_signals += mic_signals_sim[0:len(self.t),:]
# Omnidirectional noise TODO: ¿Cómo defino la SNR si hay multiples fuentes?
dp_RIRs = gpuRIR.simulateRIR(self.room_sz, self.beta, self.traj_pts[n], self.mic_pos, [1,1,1], 0.1, self.fs,
orV_rcv=self.array_setup.mic_orV, mic_pattern=self.array_setup.mic_pattern)
dp_signals = gpuRIR.simulateTrajectory(self.source_signal[n], dp_RIRs, timestamps=self.timestamps, fs=self.fs)
ac_pow[n] = np.mean([acoustic_power(dp_signals[:,i]) for i in range(dp_signals.shape[1])])
noise = np.sqrt(ac_pow.mean()/10**(self.SNR/10)) * np.random.standard_normal((len(self.t), nb_mics))
if separated_sources_simulation:
mic_signals[-1, ...] = noise
else:
mic_signals += noise
# Apply the propagation delay to the VAD information if it exists
if hasattr(self, 'source_vad'):
self.vad = []
for n in range(self.n_sources):
vad = gpuRIR.simulateTrajectory(self.source_vad[n], dp_RIRs, timestamps=self.timestamps, fs=self.fs)
self.vad.append( vad[0:len(self.t),:].mean(axis=1) > vad[0:len(self.t),:].max()*1e-3 )
self.vad = np.logical_or.reduce(self.vad)
return mic_signals
def get_rmsae(self, frames_to_exclude=0, exclude_silences=False):
""" Returns the Root Mean Square Angular Error (degrees) of the DOA estimation.
The scene need to have the fields DOAw and DOAw_pred with the DOA groundtruth and the estimation.
"""
DOAw_pred = torch.from_numpy(np.stack(self.DOAw_pred))[:, frames_to_exclude:, :]
DOAw = torch.from_numpy(np.stack(self.DOAw))[:, frames_to_exclude:, :]
errors, pairings = [], []
for pairing in permutations(range(DOAw.shape[0])):
pairings.append(pairing)
if not exclude_silences:
errors.append(rms_angular_error_deg(DOAw_pred[pairing, ...].view(-1, 2),
DOAw.view(-1, 2)))
else:
silences = self.vad.mean(axis=1) < 2 / 3
errors.append(rms_angular_error_deg(DOAw_pred[pairing, np.invert(silences), ...].view(-1, 2),
DOAw[:,np.invert(silences),...].view(-1, 2)))
min_idx = np.argmin(errors)
self.DOAw_pred = [self.DOAw_pred[pairings[min_idx][s]] for s in range(DOAw_pred.shape[0])]
return errors[min_idx].item()
# TODO: Repalantear si tiene sentido cuando hay multiples fuentes
def findMapMaximum(self, exclude_silences=False):
""" Generates the field DOAw_est_max with the DOA estimation using the SRP-PHAT maximums
and returns its RMSAE (in degrees) if the field DOAw exists with the DOA groundtruth.
The scene need to have the field maps with the SRP-PHAT map of each window.
You can choose whether to include the silent frames into the RMSAE computation or not.
"""
max_flat_idx = self.maps.reshape((self.maps.shape[0], -1)).argmax(1)
theta_max_idx, phi_max_idx = np.unravel_index(max_flat_idx, self.maps.shape[1:])
# Index to angle (radians)
if self.array_setup.arrayType == 'planar':
theta = np.linspace(0, np.pi/2, self.maps.shape[1])
else:
theta= np.linspace(0, np.pi, self.maps.shape[1])
phi = np.linspace(-np.pi, np.pi, self.maps.shape[2]+1)
phi = phi[:-1]
DOAw_srpMax = np.stack((theta[theta_max_idx], phi[phi_max_idx]), axis=-1)
self.DOAw_srpMax = DOAw_srpMax
if not exclude_silences:
if hasattr(self, 'DOAw'):
return rms_angular_error_deg(torch.from_numpy(self.DOAw_srpMax),
torch.from_numpy(self.DOAw))
else:
silences = self.vad.mean(axis=1) < 2/3
self.DOAw_srpMax[silences] = np.NaN
if hasattr(self, 'DOAw'):
return rms_angular_error_deg(torch.from_numpy(DOAw_srpMax[np.invert(silences), :]),
torch.from_numpy(self.DOAw[np.invert(silences), :]) )
def findMapMaximumIco(self, ico_grid, exclude_silences=False):
""" Generates the field DOAw_est_max with the DOA estimation using the SRP-PHAT maximums
and returns its RMSAE (in degrees) if the field DOAw exists with the DOA groundtruth.
The scene need to have the field maps with the SRP-PHAT map of each window.
You can choose whether to include the silent frames into the RMSAE computation or not.
"""
max_flat_idx = self.maps.reshape((self.maps.shape[0], -1)).argmax(1)
chart_max_idx, h_max_idx, w_max_idx = np.unravel_index(max_flat_idx, self.maps.shape[1:])
max_cart_coor = ico_grid[chart_max_idx, h_max_idx, w_max_idx, :]
self.DOAw_srpMax = (cart2sph(max_cart_coor)[:,1:],)
if not exclude_silences:
if hasattr(self, 'DOAw'):
return rms_angular_error_deg(torch.from_numpy(self.DOAw_srpMax[0]),
torch.from_numpy(self.DOAw[0]))
else:
silences = self.vad.mean(axis=1) < 2/3
self.DOAw_srpMax[0][silences] = np.NaN
if hasattr(self, 'DOAw'):
return rms_angular_error_deg(torch.from_numpy(self.DOAw_srpMax[0][np.invert(silences), :]),
torch.from_numpy(self.DOAw[0][np.invert(silences), :]) )
def plotScene(self, view='3D'):
""" Plots the source trajectory and the microphones within the room
"""
assert view in ['3D', 'XYZ', 'XY', 'XZ', 'YZ']
fig = plt.figure()
if view == '3D' or view == 'XYZ':
ax = Axes3D(fig)
ax.set_xlim3d(0, self.room_sz[0])
ax.set_ylim3d(0, self.room_sz[1])
ax.set_zlim3d(0, self.room_sz[2])
for n in range(len(self.traj_pts)):
ax.scatter(self.traj_pts[n][:,0], self.traj_pts[n][:,1], self.traj_pts[n][:,2])
ax.text(self.traj_pts[n][0,0], self.traj_pts[n][0,1], self.traj_pts[n][0,2], 'start')
ax.scatter(self.mic_pos[:,0], self.mic_pos[:,1], self.mic_pos[:,2])
ax.set_title('$T_{60}$' + ' = {:.3f}s, SNR = {:.1f}dB'.format(self.T60, self.SNR))
ax.set_xlabel('x [m]')
ax.set_ylabel('y [m]')
ax.set_zlabel('z [m]')
else:
ax = fig.add_subplot(111)
plt.gca().set_aspect('equal', adjustable='box')
if view == 'XY':
ax.set_xlim(0, self.room_sz[0])
ax.set_ylim(0, self.room_sz[1])
for n in range(len(self.traj_pts)):
ax.scatter(self.traj_pts[n][:,0], self.traj_pts[n][:,1])
ax.text(self.traj_pts[n][0,0], self.traj_pts[n][0,1], 'start')
ax.scatter(self.mic_pos[:,0], self.mic_pos[:,1])
ax.legend(['Source trajectory', 'Microphone array'])
ax.set_xlabel('x [m]')
ax.set_ylabel('y [m]')
elif view == 'XZ':
ax.set_xlim(0, self.room_sz[0])
ax.set_ylim(0, self.room_sz[2])
for n in range(len(self.traj_pts)):
ax.scatter(self.traj_pts[n][:,0], self.traj_pts[n][:,2])
ax.text(self.traj_pts[n][0,0], self.traj_pts[n][0,2], 'start')
ax.scatter(self.mic_pos[:,0], self.mic_pos[:,2])
ax.legend(['Source trajectory', 'Microphone array'])
ax.set_xlabel('x [m]')
ax.set_ylabel('z [m]')
elif view == 'YZ':
ax.set_xlim(0, self.room_sz[1])
ax.set_ylim(0, self.room_sz[2])
for n in range(len(self.traj_pts)):
ax.scatter(self.traj_pts[n][:,1], self.traj_pts[n][:,2])
ax.text(self.traj_pts[n][0,1], self.traj_pts[n][0,2], 'start')
ax.scatter(self.mic_pos[:,1], self.mic_pos[:,2])
ax.legend(['Source trajectory', 'Microphone array'])
ax.set_xlabel('y [m]')
ax.set_ylabel('z [m]')
plt.show()
def plotDOA(self):
""" Plots the groundtruth DOA
"""
fig = plt.figure()
ax = fig.add_subplot(111)
for n in range(len(self.DOA)):
ax.plot(self.t, self.DOA[n] * 180/np.pi)
ax.legend(['Elevation', 'Azimuth'])
ax.set_xlabel('time [s]')
ax.set_ylabel('DOA [$^\circ$]')
plt.show()
def plotEstimation(self, legned_loc='best', title=None, file_name=None):
""" Plots the DOA groundtruth and its estimation.
The scene need to have the fields DOAw and DOAw_pred with the DOA groundtruth and the estimation.
If the scene has the field DOAw_srpMax with the SRP-PHAT estimation, it also plots it.
"""
fig = plt.figure()
gs = fig.add_gridspec(7, 1)
ax = fig.add_subplot(gs[0,0])
for n in range(len(self.source_signal)):
ax.plot(self.t, self.source_signal[n])
plt.xlim(self.tw[0], self.tw[-1])
plt.tick_params(axis='both', which='both', bottom=False, labelbottom=False, left=False, labelleft=False)
if title is not None: plt.title(title)
ax = fig.add_subplot(gs[1:,0])
if hasattr(self, 'DOAw_srpMax'):
# plt.gca().set_prop_cycle(None)
ax.plot(self.tw, self.DOAw_srpMax[n][:,0] * 180 / np.pi, '.', markersize=4, color='#99cbed')
ax.plot(self.tw, self.DOAw_srpMax[n][:,1] * 180 / np.pi, '.', markersize=4, color='#ffcc9f')
for n in range(len(self.DOAw)):
ax.plot(self.tw, self.DOAw[n] * 180/np.pi)
plt.gca().set_prop_cycle(None)
for n in range(len(self.DOAw_pred)):
ax.plot(self.tw, self.DOAw_pred[n] * 180/np.pi, '--')
plt.legend(['Polar angle', 'Azimuth']*len(self.DOAw), loc=legned_loc)
plt.xlabel('time [s]')
plt.ylabel('DOA [$^\circ$]')
silences = self.vad.mean(axis=1) < 2/3
silences_idx = silences.nonzero()[0]
start, end = [], []
for i in silences_idx:
if not i - 1 in silences_idx:
start.append(i)
if not i + 1 in silences_idx:
end.append(i)
for s, e in zip(start, end):
plt.axvspan((s-0.5)*self.tw[1], (e+0.5)*self.tw[1], facecolor='0.5', alpha=0.5)
plt.xlim(self.tw[0], self.tw[-1])
if file_name is not None: fig.savefig(file_name)
plt.show()
def plotMap(self, w_idx):
""" Plots the SRP-PHAT map of the window w_idx.
If the scene has the fields DOAw, DOAw_pred, DOAw_srpMax it also plot them.
"""
maps = np.concatenate((self.maps, self.maps[..., 0, np.newaxis]), axis=-1)
thetaMax = np.pi / 2 if self.array_setup.arrayType == 'planar' else np.pi
theta = np.linspace(0, thetaMax, maps.shape[-2])
phi = np.linspace(-np.pi, np.pi, maps.shape[-1])
map = maps[w_idx, ...]
DOA = [self.DOAw[n][w_idx, ...] for n in range(len(self.DOAw))] if hasattr(self, 'DOAw') else None
DOA_pred = [self.DOAw_pred[n][w_idx, ...] for n in range(len(self.DOAw_pred))] if hasattr(self, 'DOAw_pred') else None
DOA_srpMax = self.DOAw_srpMax[w_idx, ...] if hasattr(self, 'DOAw_srpMax') else None
plot_srp_map(theta, phi, map, DOA, DOA_pred, DOA_srpMax)
def animateScene(self, fps=10, file_name=None):
""" Creates an animation with the SRP-PHAT maps of each window.
The scene need to have the field maps with the SRP-PHAT map of each window.
If the scene has the fields DOAw, DOAw_pred, DOAw_srpMax it also includes them.
"""
maps = np.concatenate((self.maps, self.maps[..., 0, np.newaxis]), axis=-1)
thetaMax = np.pi/2 if self.array_setup=='planar' else np.pi
theta = np.linspace(0, thetaMax, maps.shape[-2])
phi = np.linspace(-np.pi, np.pi, maps.shape[-1])
DOAw = self.DOAw if hasattr(self, 'DOAw') else None
DOAw_pred = self.DOAw_pred if hasattr(self, 'DOAw_pred') else None
DOAw_srpMax = self.DOAw_srpMax if hasattr(self, 'DOAw_srpMax') else None
animate_trajectory(theta, phi, maps, fps, DOAw, DOAw_pred, DOAw_srpMax, file_name)
# %% Source signal Datasets
class LibriSpeechDataset(Dataset):
""" Dataset with random LibriSpeech utterances.
You need to indicate the path to the root of the LibriSpeech dataset in your file system
and the length of the utterances in seconds.
The dataset length is equal to the number of chapters in LibriSpeech (585 for train-clean-100 subset)
but each time you ask for dataset[idx] you get a random segment from that chapter.
It uses webrtcvad to clean the silences from the LibriSpeech utterances.
"""
def _exploreCorpus(self, path, file_extension, corpus_in_folders=True):
directory_tree = {}
if corpus_in_folders:
for item in os.listdir(path):
if os.path.isdir( os.path.join(path, item) ):
directory_tree[item] = self._exploreCorpus( os.path.join(path, item), file_extension )
elif item.split(".")[-1] == file_extension:
directory_tree[ item.split(".")[0] ] = os.path.join(path, item)
else:
for item in os.listdir(path):
sp_fn = re.split('[-.]', item)
if len(sp_fn) == 4 and sp_fn[-1] == file_extension:
if not sp_fn[0] in directory_tree: directory_tree[sp_fn[0]] = {}
if not sp_fn[1] in directory_tree[sp_fn[0]]: directory_tree[sp_fn[0]][sp_fn[1]] = {}
directory_tree[sp_fn[0]][sp_fn[1]][sp_fn[2]] = os.path.join(path, item)
return directory_tree
def _cleanSilences(self, s, aggressiveness, return_vad=False):
self.vad.set_mode(aggressiveness)
vad_out = np.zeros_like(s)
vad_frame_len = int(10e-3 * self.fs)
n_vad_frames = len(s) // vad_frame_len
for frame_idx in range(n_vad_frames):
frame = s[frame_idx * vad_frame_len: (frame_idx + 1) * vad_frame_len]
frame_bytes = (frame * 32767).astype('int16').tobytes()
vad_out[frame_idx*vad_frame_len: (frame_idx+1)*vad_frame_len] = self.vad.is_speech(frame_bytes, self.fs)
s_clean = s * vad_out
return (s_clean, vad_out) if return_vad else s_clean
def __init__(self, path, T, size=None, return_vad=False, readers_range=None, file_extension='flac', corpus_in_folders=True):
self.corpus = self._exploreCorpus(path, file_extension, corpus_in_folders)
if readers_range is not None:
for key in list(map(int, self.nChapters.keys())):
if int(key) < readers_range[0] or int(key) > readers_range[1]:
del self.corpus[key]
self.nReaders = len(self.corpus)
self.nChapters = {reader: len(self.corpus[reader]) for reader in self.corpus.keys()}
self.nUtterances = {reader: {
chapter: len(self.corpus[reader][chapter]) for chapter in self.corpus[reader].keys()
} for reader in self.corpus.keys()}
self.chapterList = []
for chapters in list(self.corpus.values()):
self.chapterList += list(chapters.values())
self.fs = 16000
self.T = T
self.return_vad = return_vad
self.vad = webrtcvad.Vad()
self.sz = len(self.chapterList) if size is None else size
def __len__(self):
return self.sz
def __getitem__(self, idx):
if idx < 0: idx = len(self) + idx
while idx >= len(self.chapterList): idx -= len(self.chapterList)
chapter = self.chapterList[idx]
# Get a random speech segment from the selected chapter
s = np.array([])
utt_paths = list(chapter.values())
n = np.random.randint(0,len(chapter))
while s.shape[0] < self.T * self.fs:
utterance, fs = soundfile.read(utt_paths[n])
assert fs == self.fs
s = np.concatenate([s, utterance])
n += 1
if n >= len(chapter): n=0
s = s[0: self.T * fs]
s -= s.mean()
# Clean silences, it starts with the highest aggressiveness of webrtcvad,
# but it reduces it if it removes more than the 66% of the samples
s_clean, vad_out = self._cleanSilences(s, 3, return_vad=True)
if np.count_nonzero(s_clean) < len(s_clean) * 0.66:
s_clean, vad_out = self._cleanSilences(s, 2, return_vad=True)
if np.count_nonzero(s_clean) < len(s_clean) * 0.66:
s_clean, vad_out = self._cleanSilences(s, 1, return_vad=True)
return (s_clean, vad_out) if self.return_vad else s_clean
# %% Acoustic Scene Datasets
class RandomTrajectoriesDataset(Dataset):
""" Dataset Acoustic Scenes with random trajectories.
The length of the dataset is the length of the source signals dataset.
When you access to an element you get both the simulated signals in the microphones and the AcousticScene object.
"""
def __init__(self, sourceDataset, room_sz, T60, abs_weights, array_setup, array_pos, SNR, nb_points,
n_sources=1, size=200, transforms=None, separated_sources_simulation=False, include_anechoic_simulation=False):
"""
sourceDataset: dataset with the source signals (such as LibriSpeechDataset)
room_sz: Size of the rooms in meters
T60: Reverberation time of the room in seconds
abs_weights: Absorption coefficients rations of the walls
array_setup: Named tuple with the characteristics of the array
array_pos: Position of the center of the array as a fraction of the room size
SNR: Signal to (omnidirectional) Noise Ration
nb_points: Number of points to simulate along the trajectory
n_sources: Number of sources with random trajectories in each scene
size: Dataset size. Actually, the dataset is always infinite, it's only affects to the epoch sizes. [200]
separated_sources_simulation: Do not summ the contribution of each source to the microphone signals. [False]
transforms: Transform to perform to the simulated microphone signals and the Acoustic Scene
include_anechoic_simulation: Include a third output with the anechoic simulation of the scenario [False]
Any parameter (except from nb_points and transforms) can be Parameter object to make it random.
"""
self.sourceDataset = sourceDataset
self.room_sz = room_sz if type(room_sz) is Parameter else Parameter(room_sz)
self.T60 = T60 if type(T60) is Parameter else Parameter(T60)
self.abs_weights = abs_weights if type(abs_weights) is Parameter else Parameter(abs_weights)
assert np.count_nonzero(array_setup.orV) == 1, "array_setup.orV mus be parallel to an axis"
self.array_setup = array_setup
self.N = array_setup.mic_pos.shape[0]
self.array_pos = array_pos if type(array_pos) is Parameter else Parameter(array_pos)
self.SNR = SNR if type(SNR) is Parameter else Parameter(SNR)
self.nb_points = nb_points
self.fs = sourceDataset.fs
self.n_sources = n_sources if type(n_sources) is Parameter else Parameter(n_sources)
self.size = size
self.separated_sources_simulation = separated_sources_simulation
self.include_anechoic_simulation = include_anechoic_simulation
self.transforms = transforms
def __len__(self):
return self.size #len(self.sourceDataset)
def __getitem__(self, idx):
acoustic_scene = self.getRandomScene(None)
mic_signals = acoustic_scene.simulate(self.separated_sources_simulation)
if self.include_anechoic_simulation:
acoustic_scene_anechoic = copy.copy(acoustic_scene)
acoustic_scene_anechoic.T60 = 0.0
mic_signals_anechoic = acoustic_scene_anechoic.simulate(self.separated_sources_simulation)
if self.transforms is not None:
for t in self.transforms:
mic_signals, acoustic_scene = t(mic_signals, acoustic_scene)
if self.include_anechoic_simulation:
mic_signals_anechoic = t(mic_signals_anechoic, None)[0]
if self.include_anechoic_simulation:
return mic_signals, acoustic_scene, mic_signals_anechoic
else:
return mic_signals, acoustic_scene
def get_batch(self, idx1, idx2):
mic_sig_batch = []
acoustic_scene_batch = []
mic_sig_anechoic_batch = []
for idx in range(idx1, idx2):
out_list = self[idx]
mic_sig_batch.append(out_list[0])
acoustic_scene_batch.append(out_list[1])
if self.include_anechoic_simulation:
mic_sig_anechoic_batch.append(out_list[2])
if self.include_anechoic_simulation:
return np.stack(mic_sig_batch), np.stack(acoustic_scene_batch), np.stack(mic_sig_anechoic_batch)
else:
return np.stack(mic_sig_batch), np.stack(acoustic_scene_batch)
def getRandomScene(self, idx):
n_sources = self.n_sources.getValue()
# Source signal
assert idx is None or n_sources==1
if idx is not None:
source_signal, vad = self.sourceDataset[idx]
source_signal = (source_signal,)
vad = (vad,)
else:
indexes = np.random.randint(0, len(self.sourceDataset), n_sources)
sss_and_vads = [self.sourceDataset[indexes[n]] for n in range(n_sources)]
sss_and_vads = list(zip(*sss_and_vads))
source_signal = sss_and_vads[0]
vad = sss_and_vads[1]
# Room
room_sz = self.room_sz.getValue()
T60 = self.T60.getValue()
abs_weights = self.abs_weights.getValue()
beta = gpuRIR.beta_SabineEstimation(room_sz, T60, abs_weights)
# Microphones
array_pos = self.array_pos.getValue() * room_sz
mic_pos = array_pos + self.array_setup.mic_pos
# Trajectory points
src_pos_min = np.array([0.0, 0.0, 0.0])
src_pos_max = room_sz
if self.array_setup.arrayType == 'planar':
if np.sum(self.array_setup.orV) > 0:
src_pos_min[np.nonzero(self.array_setup.orV)] = array_pos[np.nonzero(self.array_setup.orV)]
else:
src_pos_max[np.nonzero(self.array_setup.orV)] = array_pos[np.nonzero(self.array_setup.orV)]
traj_pts = list()
for i in range(n_sources):
src_pos_ini = src_pos_min + np.random.random(3) * (src_pos_max - src_pos_min)
src_pos_end = src_pos_min + np.random.random(3) * (src_pos_max - src_pos_min)
Amax = np.min(np.stack((src_pos_ini - src_pos_min,
src_pos_max - src_pos_ini,
src_pos_end - src_pos_min,
src_pos_max - src_pos_end)),
axis=0)
A = np.random.random(3) * np.minimum(Amax, 1) # Oscilations with 1m as maximum in each axis
w = 2*np.pi / self.nb_points * np.random.random(3) * 2 # Between 0 and 2 oscilations in each axis
traj_pts_tmp = np.array([np.linspace(i,j,self.nb_points) for i,j in zip(src_pos_ini, src_pos_end)]).transpose()
traj_pts_tmp += A * np.sin(w * np.arange(self.nb_points)[:, np.newaxis])
traj_pts.append(traj_pts_tmp)
# Interpolate trajectory points
timestamps = np.arange(self.nb_points) * len(source_signal[0]) / self.fs / self.nb_points
t = np.arange(len(source_signal[0]))/self.fs
trajectory = [np.array([np.interp(t, timestamps, traj_pts[j][:,i]) for i in range(3)]).transpose() for j in range(n_sources)]
acoustic_scene = AcousticScene(
room_sz = room_sz,
T60 = T60,
beta = beta,
SNR = self.SNR.getValue(),
array_setup = self.array_setup,
mic_pos = mic_pos,
n_sources = n_sources,
source_signal = source_signal,
fs = self.fs,
t = t,
traj_pts = traj_pts,
timestamps = timestamps,
trajectory = trajectory,
DOA = [cart2sph(trajectory[n] - array_pos) [:,1:3] for n in range(n_sources)]
)
acoustic_scene.source_vad = vad
return acoustic_scene
class RandomTrajectoryDataset(RandomTrajectoriesDataset):
""" Old style dataset for backward compatibility.
"""
def __init__(self, sourceDataset, room_sz, T60, abs_weights, array_setup, array_pos, SNR, nb_points, transforms=None):
"""
sourceDataset: dataset with the source signals (such as LibriSpeechDataset)
room_sz: Size of the rooms in meters
T60: Reverberation time of the room in seconds
abs_weights: Absorption coefficients rations of the walls
array_setup: Named tuple with the characteristics of the array
array_pos: Position of the center of the array as a fraction of the room size
SNR: Signal to (omnidirectional) Noise Ration
nb_points: Number of points to simulate along the trajectory
transforms: Transform to perform to the simulated microphone signals and the Acoustic Scene
Any parameter (except from nb_points and transforms) can be Parameter object to make it random.
"""
super().__init__(sourceDataset, room_sz, T60, abs_weights, array_setup, array_pos, SNR, nb_points,
n_sources=1, size=len(sourceDataset), transforms=transforms)
def __getitem__(self, idx):
if idx < 0: idx = len(self) + idx
acoustic_scene = self.getRandomScene(idx)
mic_signals = acoustic_scene.simulate()
if self.transforms is not None:
for t in self.transforms:
mic_signals, acoustic_scene = t(mic_signals, acoustic_scene)
return mic_signals, acoustic_scene
class LocataDataset(Dataset):
""" Dataset with the LOCATA dataset recordings and its corresponding Acoustic Scenes.
When you access to an element you get both the simulated signals in the microphones and the AcousticScene object.
"""
def __init__(self, path, array, fs, tasks=(1,3,5), recording=None, dev=False, transforms = None):
"""
path: path to the root of the LOCATA dataset in your file system
array: string with the desired array ('dummy', 'eigenmike', 'benchmark2' or 'dicit')
fs: sampling frequency (you can use it to downsample the LOCATA recordings)
tasks: LOCATA tasks to include in the dataset (only one-source tasks are supported)
recording: recordings that you want to include in the dataset (only supported if you selected only one task)
dev: True if the groundtruth source positions are available
transforms: Transform to perform to the simulated microphone signals and the Acoustic Scene
"""
assert array in ('dummy', 'eigenmike', 'benchmark2', 'dicit'), 'Invalid array.'
assert recording is None or len(tasks) == 1, 'Specific recordings can only be selected for dataset with only one task'
# for task in tasks: assert task in (1,3,5), 'Invalid task ' + str(task) + '.'
self.path = path
self.dev = dev
self.array = array
self.tasks = tasks
self.transforms = transforms
self.fs = fs
self.vad = webrtcvad.Vad()
self.vad.set_mode(3)
if array == 'dummy':
self.array_setup = dummy_array_setup
elif array == 'eigenmike':
self.array_setup = eigenmike_array_setup
elif array == 'benchmark2':
self.array_setup = benchmark2_array_setup
elif array == 'dicit':
self.array_setup = dicit_array_setup
self.directories = []
for task in tasks:
task_path = os.path.join(path, 'task' + str(task))
for recording in os.listdir( task_path ):
arrays = os.listdir( os.path.join(task_path, recording) )
if array in arrays:
self.directories.append( os.path.join(task_path, recording, array) )
self.directories.sort()
def __len__(self):
return len(self.directories)
def __getitem__(self, idx):
directory = self.directories[idx]
mic_signals, fs = soundfile.read( os.path.join(directory, 'audio_array_' + self.array + '.wav') )
if fs > self.fs:
mic_signals = scipy.signal.decimate(mic_signals, int(fs/self.fs), axis=0)
new_fs = fs / int(fs/self.fs)
if new_fs != self.fs: warnings.warn('The actual fs is {}Hz'.format(new_fs))
self.fs = new_fs
elif fs < self.fs:
raise Exception('The sampling rate of the file ({}Hz) was lower than self.fs ({}Hz'.format(fs, self.fs))
# Remove initial silence
start = np.argmax(mic_signals[:,0] > mic_signals[:,0].max()*0.15)
mic_signals = mic_signals[start:,:]
t = (np.arange(len(mic_signals)) + start)/self.fs
df = pandas.read_csv( os.path.join(directory, 'position_array_' + self.array + '.txt'), sep='\t' )
array_pos = np.stack((df['x'].values, df['y'].values,df['z'].values), axis=-1)
array_ref_vec = np.stack((df['ref_vec_x'].values, df['ref_vec_y'].values,df['ref_vec_z'].values), axis=-1)
array_rotation = np.zeros((array_pos.shape[0],3,3))
for i in range(3):
for j in range(3):
array_rotation[:,i,j] = df['rotation_' + str(i+1) + str(j+1)]
df = pandas.read_csv( os.path.join(directory, 'required_time.txt'), sep='\t' )
required_time = df['hour'].values*3600+df['minute'].values*60+df['second'].values
timestamps = required_time - required_time[0]
if self.dev:
source_signals = []
sources_pos = []
trajectories = []
for file in os.listdir( directory ):
if file.startswith('audio_source') and file.endswith('.wav'):
source_signal, fs_src = soundfile.read(os.path.join(directory, file))
if fs > self.fs:
source_signal = scipy.signal.decimate(source_signal, int(fs_src / self.fs), axis=0)
source_signals.append(source_signal[start:start+len(t)])
if file.startswith('position_source'):
df = pandas.read_csv( os.path.join(directory, file), sep='\t' )
source_pos = np.stack((df['x'].values, df['y'].values,df['z'].values), axis=-1)
sources_pos.append( source_pos )
trajectories.append( np.array([np.interp(t, timestamps, source_pos[:,i]) for i in range(3)]).transpose() )
# sources_pos = np.stack(sources_pos)
# trajectories = np.stack(trajectories)
DOA = []
for s in range(len(sources_pos)):
source_pos_local = np.matmul( np.expand_dims(sources_pos[s] - array_pos, axis=1), array_rotation ).squeeze() # np.matmul( array_rotation, np.expand_dims(sources_pos[s,...] - array_pos, axis=-1) ).squeeze()
DOA_pts = cart2sph(source_pos_local)[:,1:3]
DOA_temp = np.array([np.interp(t, timestamps, DOA_pts[:,i]) for i in range(2)]).transpose()
DOA_temp[DOA_temp[...,1]<-np.pi, 1] += 2*np.pi
DOA.append(DOA_temp)
else:
sources_pos = None
DOA = None
source_signal = np.NaN * np.ones((len(mic_signals),1))
acoustic_scene = AcousticScene(
room_sz = np.NaN * np.ones((3,1)),
T60 = np.NaN,
beta = np.NaN * np.ones((6,1)),
SNR = np.NaN,
array_setup = self.array_setup,
mic_pos = np.matmul( array_rotation[0,...], np.expand_dims(self.array_setup.mic_pos, axis=-1) ).squeeze() + array_pos[0,:], # self.array_setup.mic_pos + array_pos[0,:], # Not valid for moving arrays
source_signal = source_signals,
fs = self.fs,
t = t - start/self.fs,
traj_pts = sources_pos,
timestamps = timestamps - start/self.fs,
trajectory = trajectories,
DOA = DOA
)
vad = np.zeros_like(source_signals[0])
vad_frame_len = int(10e-3 * self.fs)
n_vad_frames = len(source_signals[0]) // vad_frame_len
for frame_idx in range(n_vad_frames):
frame = source_signals[0][frame_idx * vad_frame_len: (frame_idx + 1) * vad_frame_len]
frame_bytes = (frame * 32767).astype('int16').tobytes()
vad[frame_idx*vad_frame_len: (frame_idx+1)*vad_frame_len] = self.vad.is_speech(frame_bytes, int(self.fs))
acoustic_scene.vad = vad
mic_signals.transpose()
if self.transforms is not None:
for t in self.transforms:
mic_signals, acoustic_scene = t(mic_signals, acoustic_scene)
return mic_signals, acoustic_scene
def get_batch(self, idx1, idx2):