-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfig.py
83 lines (74 loc) · 4.05 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
'''
Author: roy
Date: 2020-11-01 11:16:54
LastEditTime: 2020-11-09 09:20:19
LastEditors: Please set LastEditors
Description: In User Settings Edit
FilePath: /LAMA/config.py
'''
import argparse
import logging
from pytorch_lightning import Trainer
from pprint import pprint
logging.basicConfig(level=logging.INFO,
format='%(asctime)s %(filename)s [line:%(lineno)d] %(levelname)s: %(message)s', datefmt='%a, %d %b %Y %H:%M:%S')
logger = logging.getLogger(__name__)
conceptNet_path = "./data/ConceptNet/test.jsonl"
conceptnet_ckbc_path = "./data/CKBC"
# allowed models
MODEL_NAMES = ['microsoft/mpnet-base', 'bert-base-cased', 'bert-base-uncased', 'distilbert-base-cased', 'distilbert-base-uncased', 'bert-base-cased-finetuned-mrpc', 'phiyodr/bert-base-finetuned-squad2',
'bert-large-uncased', 'bert-large-cased', 'dbmdz/bert-base-cased-finetuned-conll03-english']
# layers
TRANSFORMER_LAYERS = {
'bert-base-uncased': 12,
'bert-base-cased': 12,
'bert-large-uncased': 24,
'bert-large-cased': 24,
'distilbert-base-uncased': 6,
'distilbert-base-cased': 6,
'microsoft/mpnet-base': 12
}
def get_args():
parser = argparse.ArgumentParser(
"Probing knwoledge in pretrained language model using self-masking")
parser = Trainer.add_argparse_args(parser)
parser.add_argument('--seed', type=int, default=42, help="random seed")
parser.add_argument('--temperature', type=float, default=0.1,
help="temperature of bernoulli re-parameterization tricks")
parser.add_argument('--batch_size', type=int, default=32,
help="batch size", required=True)
parser.add_argument('--data_path', type=str, default='./data/ConceptNet/test.jsonl',
help="path of knowledge source, ends with .jsonl")
parser.add_argument('--save_dir', type=str, default='./masks',
help="directory to save trained pruning mask generators")
parser.add_argument('--model_name', type=str, default='bert-base-uncased', required=True, choices=MODEL_NAMES,
help="name of pretrained language model")
parser.add_argument('--max_length', type=int, default=20,
help="max length of input cloze question")
parser.add_argument('--lr', type=float, default=2e-4, help="learning rate")
parser.add_argument('--warmup', type=float, default=0.1,
help="ration of total max steps of warm up stage")
parser.add_argument('--device', type=str, default='cuda:3', help="gpu id")
parser.add_argument('--test', action='store_true', default=False,
help="whether trigger test utility rather than official training")
parser.add_argument('--soft_infer', action='store_true',
default=False, help="whether use soft mask or hard binary mask during inference")
parser.add_argument('--soft_train', action='store_true', default=False,
help="whether to use re-parametrization during training")
parser.add_argument('--bottom_layer_index', type=int, default=0)
parser.add_argument('--top_layer_index', type=int, default=11)
parser.add_argument('--init_method', type=str, default='uniform', choices=[
'uniform', 'normal', 'ones', 'zeros', '2.95', '2.75', '1.38', '0.85', '0.62', '0.41'], help="initialization method for pruning mask generators which determine the initial sparsity of pruning masks")
parser.add_argument('--l0', default=False, action='store_true',
help="whether add l0 penalty to pruning masks")
parser.add_argument('--csqa', action='store_true', default=False)
parser.add_argument('--copa', action='store_true', default=False)
parser.add_argument('--eval', action='store_true', default=False)
args = parser.parse_args()
if args.model_name not in MODEL_NAMES:
raise Exception("model name {} not in predefined list: {}".format_map(
args.model_name, MODEL_NAMES))
pprint(vars(args))
return args
if __name__ == "__main__":
get_args()