-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtrain.py
119 lines (89 loc) · 3.57 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import torch
import torch.utils.data
from lib.utils.opts import opts
from lib.utils.logger import Logger
from datetime import datetime
from lib.models.stNet import get_det_net,load_model, save_model
from lib.dataset.coco_rsdata import COCO
from lib.Trainer.ctdet import CtdetTrainer
def main(opt):
torch.manual_seed(opt.seed)
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
opt.device = torch.device('cuda' if opt.gpus[0] >= 0 else 'cpu')
val_intervals = opt.val_intervals
DataVal = COCO(opt, 'test')
val_loader = torch.utils.data.DataLoader(
DataVal,
batch_size=1,
shuffle=False,
num_workers=opt.num_workers,
pin_memory=True
)
DataTrain = COCO(opt, 'train')
base_s = DataTrain.coco
train_loader = torch.utils.data.DataLoader(
DataTrain,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.num_workers,
pin_memory=True,
drop_last=True
)
print('Creating model...')
head = {'hm': DataTrain.num_classes, 'wh': 2, 'reg': 2}
model = get_det_net(head, opt.model_name) # 建立模型
print(opt.model_name)
optimizer = torch.optim.Adam(model.parameters(), opt.lr) #设置优化器
start_epoch = 0
if(not os.path.exists(opt.save_dir)):
os.mkdir(opt.save_dir)
if(not os.path.exists(opt.save_results_dir)):
os.mkdir(opt.save_results_dir)
logger = Logger(opt)
if opt.load_model != '':
model, optimizer, start_epoch = load_model(
model, opt.load_model, optimizer, opt.resume, opt.lr, opt.lr_step) # 导入训练好的模型
trainer = CtdetTrainer(opt, model, optimizer)
trainer.set_device(opt.gpus, opt.device)
print('Starting training...')
best = -1
for epoch in range(start_epoch + 1, opt.num_epochs + 1):
log_dict_train, _ = trainer.train(epoch, train_loader)
logger.write('epoch: {} |'.format(epoch))
save_model(os.path.join(opt.save_dir, 'model_last.pth'),
epoch, model, optimizer)
for k, v in log_dict_train.items():
logger.write('{} {:8f} | '.format(k, v))
if val_intervals > 0 and epoch % val_intervals == 0:
save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)),
epoch, model, optimizer)
with torch.no_grad():
log_dict_val, preds, stats = trainer.val(epoch, val_loader,base_s, DataVal)
for k, v in log_dict_val.items():
logger.write('{} {:8f} | '.format(k, v))
logger.write('eval results: ')
for k in stats.tolist():
logger.write('{:8f} | '.format(k))
if log_dict_val['ap50'] > best:
best = log_dict_val['ap50']
save_model(os.path.join(opt.save_dir, 'model_best.pth'),
epoch, model)
else:
save_model(os.path.join(opt.save_dir, 'model_last.pth'),
epoch, model, optimizer)
logger.write('\n')
if epoch in opt.lr_step:
save_model(os.path.join(opt.save_dir, 'model_{}.pth'.format(epoch)),
epoch, model, optimizer)
lr = opt.lr * (0.1 ** (opt.lr_step.index(epoch) + 1))
print('Drop LR to', lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
logger.close()
if __name__ == '__main__':
opt = opts().parse()
main(opt)