-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathtestTrackingSort.py
210 lines (169 loc) · 6.71 KB
/
testTrackingSort.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import numpy as np
import time
import torch
from lib.utils.opts import opts
from lib.models.stNet import get_det_net, load_model
from lib.dataset.coco import COCO
from lib.external.nms import soft_nms
from lib.utils.decode import ctdet_decode
from lib.utils.post_process import ctdet_post_process
from lib.utils.sort import *
import cv2
from progress.bar import Bar
CONFIDENCE_thres = 0.3
COLORS = [(255, 0, 0)]
FONT = cv2.FONT_HERSHEY_SIMPLEX
def cv2_demo(frame, detections):
det = []
for i in range(detections.shape[0]):
if detections[i, 4] >= CONFIDENCE_thres:
pt = detections[i, :]
cv2.rectangle(frame,(int(pt[0])-4, int(pt[1])-4),(int(pt[2])+4, int(pt[3])+4),COLORS[0], 2)
cv2.putText(frame, str(pt[4]), (int(pt[0]), int(pt[1])), FONT, 1, (0, 255, 0), 1)
det.append([int(pt[0]), int(pt[1]),int(pt[2]), int(pt[3]),detections[i, 4]])
return frame, det
def process(model, image, return_time):
with torch.no_grad():
output = model(image)[-1]
hm = output['hm'].sigmoid_()
wh = output['wh']
reg = output['reg']
torch.cuda.synchronize()
forward_time = time.time()
dets = ctdet_decode(hm, wh, reg=reg)
if return_time:
return output, dets, forward_time
else:
return output, dets
def post_process(dets, meta, num_classes=1, scale=1):
dets = dets.detach().cpu().numpy()
dets = dets.reshape(1, -1, dets.shape[2])
dets = ctdet_post_process(
dets.copy(), [meta['c']], [meta['s']],
meta['out_height'], meta['out_width'], num_classes)
for j in range(1, num_classes + 1):
dets[0][j] = np.array(dets[0][j], dtype=np.float32).reshape(-1, 5)
dets[0][j][:, :4] /= scale
return dets[0]
def pre_process(image, scale=1):
height, width = image.shape[2:4]
new_height = int(height * scale)
new_width = int(width * scale)
inp_height, inp_width = height, width
c = np.array([new_width / 2., new_height / 2.], dtype=np.float32)
s = max(height, width) * 1.0
meta = {'c': c, 's': s,
'out_height': inp_height ,
'out_width': inp_width}
return meta
def merge_outputs(detections, num_classes ,max_per_image):
results = {}
for j in range(1, num_classes + 1):
results[j] = np.concatenate(
[detection[j] for detection in detections], axis=0).astype(np.float32)
soft_nms(results[j], Nt=0.5, method=2)
scores = np.hstack(
[results[j][:, 4] for j in range(1, num_classes + 1)])
if len(scores) > max_per_image:
kth = len(scores) - max_per_image
thresh = np.partition(scores, kth)[kth]
for j in range(1, num_classes + 1):
keep_inds = (results[j][:, 4] >= thresh)
results[j] = results[j][keep_inds]
return results
def test(opt, split, modelPath, show_flag, results_name):
os.environ['CUDA_VISIBLE_DEVICES'] = opt.gpus_str
# Logger(opt)
print(opt.model_name)
dataset = COCO(opt, split)
data_loader = torch.utils.data.DataLoader(
dataset,
batch_size=1, shuffle=False, num_workers=1, pin_memory=True)
model = get_det_net({'hm': dataset.num_classes, 'wh': 2, 'reg': 2}, opt.model_name) # 建立模型
model = load_model(model, modelPath)
model = model.cuda()
model.eval()
results = {}
return_time = False
scale = 1
num_classes = dataset.num_classes
max_per_image = opt.K
file_folder_pre = ''
im_count = 0
saveTxt = opt.save_track_results
if saveTxt:
track_results_save_dir = os.path.join(opt.save_results_dir, 'trackingResults'+opt.model_name)
if not os.path.exists(track_results_save_dir):
os.mkdir(track_results_save_dir)
num_iters = len(data_loader)
bar = Bar('processing', max=num_iters)
for ind, (img_id, pre_processed_images) in enumerate(data_loader):
# print(ind)
if(ind>len(data_loader)-1):
break
bar.suffix = '[{0}/{1}]|Tot: {total:} |ETA: {eta:} '.format(
ind, num_iters,total=bar.elapsed_td, eta=bar.eta_td
)
#set tracker
file_folder_cur = pre_processed_images['file_name'][0].split('/')[-3]
if file_folder_cur != file_folder_pre:
if saveTxt and file_folder_pre!='':
fid.close()
file_folder_pre = file_folder_cur
mot_tracker = Sort()
if saveTxt:
im_count = 0
txt_path = os.path.join(track_results_save_dir, file_folder_cur+'.txt')
fid = open(txt_path, 'w+')
#read images
detection = []
meta = pre_process(pre_processed_images['input'], scale)
image = pre_processed_images['input'].cuda()
img = pre_processed_images['imgOri'].squeeze().numpy()
#detection
output, dets = process(model, image, return_time)
#POST PROCESS
dets = post_process(dets, meta, num_classes)
detection.append(dets)
ret = merge_outputs(detection, num_classes, max_per_image)
#update tracker
dets_track = dets[1]
dets_track_select = np.argwhere(dets_track[:,-1]>CONFIDENCE_thres)
dets_track = dets_track[dets_track_select[:,0],:]
track_bbs_ids = mot_tracker.update(dets_track)
if(show_flag):
frame, det = cv2_demo(img, track_bbs_ids)
cv2.imshow('frame',frame)
cv2.waitKey(5)
hm1 = output['hm'].squeeze(0).squeeze(0).cpu().detach().numpy()
cv2.imshow('hm', hm1)
cv2.waitKey(5)
if saveTxt:
im_count += 1
track_bbs_ids = track_bbs_ids[::-1,:]
track_bbs_ids[:,2:4] = track_bbs_ids[:,2:4]-track_bbs_ids[:,:2]
for it in range(track_bbs_ids.shape[0]):
fid.write('%d,%d,%0.2f,%0.2f,%0.2f,%0.2f,1,-1,-1,-1\n'%(im_count,
track_bbs_ids[it,-1], track_bbs_ids[it,0],track_bbs_ids[it,1],
track_bbs_ids[it, 2], track_bbs_ids[it, 3]))
results[img_id.numpy().astype(np.int32)[0]] = ret
bar.next()
bar.finish()
dataset.run_eval(results, opt.save_results_dir, results_name)
if __name__ == '__main__':
opt = opts().parse()
split = 'test'
show_flag = opt.save_track_results
if (not os.path.exists(opt.save_results_dir)):
os.mkdir(opt.save_results_dir)
if opt.load_model != '':
modelPath = opt.load_model
else:
modelPath = './checkpoints/DSFNet.pth'
print(modelPath)
results_name = opt.model_name+'_'+modelPath.split('/')[-1].split('.')[0]
test(opt, split, modelPath, show_flag, results_name)