-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_multi.py
177 lines (133 loc) · 5.22 KB
/
main_multi.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import numpy as np
import os
from config import args
import matplotlib.pyplot as plt
import imgvision as iv
from Model.Unet import skip
from utils import *
import torch
from torch import nn
import torchvision
def spectral_varation(img):
a = img[:,1:]-img[:,:-1]
return torch.abs(a[:,1:]-a[:,:-1]).mean()
class Zm_Bn(nn.Module):
def __init__(self):
super(Zm_Bn,self).__init__()
def forward(self,x):
return x - nn.AdaptiveAvgPool2d(1)(x)
class ModelBlock(nn.Module):
def __init__(self,R,L65,LA,band=31):
super(ModelBlock, self).__init__()
self.R_ = R
self.RT = nn.Sequential(nn.Conv2d(3,band,kernel_size=3,padding=1),
nn.Conv2d(band,band,kernel_size=1),nn.ReLU())
self.L65 = L65
self.LA = LA
self.b=Zm_Bn()
def R(self,HSI):
return (HSI[0].permute(1, 2, 0) @ self.R_).permute(2, 0, 1).unsqueeze(0)
def L(self,HSI,L_):
return (HSI[0].permute(1, 2, 0) @ L_).permute(2, 0, 1).unsqueeze(0)
def forward(self,x,Y_65,Y_A):
Res65 = self.R(self.L(x,self.L65))-Y_65
ResA = self.R(self.L(x, self.LA)) - Y_A
Inv_HSI_65 = self.L(self.RT(Res65),self.L65)
Inv_HSI_A = self.L(self.RT(ResA),self.LA)
return x + self.b(0.5*(Inv_HSI_A+Inv_HSI_65))
class ModelBlock(nn.Module):
def __init__(self,R,L65,LA,band=31):
super(ModelBlock, self).__init__()
self.R_ = R
self.RT = nn.Sequential(nn.Conv2d(3,band,kernel_size=3,padding=1),
nn.Conv2d(band,band,kernel_size=1),nn.ReLU())
self.L65 = L65
self.LA = LA
def R(self,HSI):
return (HSI[0].permute(1, 2, 0) @ self.R_).permute(2, 0, 1).unsqueeze(0)
def L(self,HSI,L_):
return (HSI[0].permute(1, 2, 0) @ L_).permute(2, 0, 1).unsqueeze(0)
def forward(self,x,Y_65,Y_A):
Res65 = self.R(self.L(x,self.L65))-Y_65
ResA = self.R(self.L(x, self.LA)) - Y_A
Inv_HSI_65 = self.L(self.RT(Res65),self.L65)
Inv_HSI_A = self.L(self.RT(ResA),self.LA)
return x - 0.3*(Inv_HSI_A+Inv_HSI_65)
class MyNet(nn.Module):
def __init__(self,R,L65,LA):
super(MyNet, self).__init__()
self.GSD1 = ModelBlock(R, L65, LA)
self.GSD2 = ModelBlock(R, L65, LA)
self.GSD3 = ModelBlock(R, L65, LA)
n=4
#
self.prox1 = skip(31, 31,[40],[40],[1], n_scales=n)
#
self.prox2 = skip(31, 31,[40],[40],[1], n_scales=n)
# self.prox3 = skip(31, 31,[40],[40],[1], n_scales=n)
self.bn = Zm_Bn()
def forward(self,x,Y_65,Y_A):
x = self.prox1(self.GSD1(x, Y_65, Y_A))
x = self.prox2(self.GSD2(x, Y_65, Y_A))
x =self.GSD3(x, Y_65, Y_A)
return x.clamp(0,1)
from ssim_torch import SSIM
ssim_loss = SSIM()
for imgidx in range(1,32):
S = sio.loadmat(args.srf_path)['R']
HSI = load_HSI(args,imgidx,'cave')[:,:]
HSI = preprocess_HSI(HSI)
l65 = get_degradation('D65', S,case='ls')
lA = get_degradation('a', S,case='ls')
y_65 = HSI @ l65 @ S
y_A = HSI @ lA @ S
Y_65 = mx2tensor(y_65).cuda()
Y_A = mx2tensor(y_A).cuda()
LA = torch.FloatTensor(lA).cuda()
L65 = torch.FloatTensor(l65).cuda()
R = torch.FloatTensor(S).cuda()
Net = MyNet(R,L65,LA).cuda()
# from thop import profile
model_folder='D:/Spectral super_resolution/Dual_Illuminances_Spectra_Recovery/Result/' + str(imgidx) + 'd565A'
trainer = torch.optim.Adam(params=Net.parameters(),lr=5e-3)
sche = torch.optim.lr_scheduler.StepLR(trainer,500,0.95)
HSI_cuda = mx2tensor( HSI).cuda()
PRE = torch.rand_like(HSI_cuda)
L1 = torch.nn.L1Loss()
for i in range(5001):
trainer.zero_grad()
recon = Net(PRE,Y_65,Y_A)
Y_65_p,Y_A_p = HSI2MSI(recon,L65 @ R),HSI2MSI(recon,LA @ R)
# Y_65_a, Y_A_a = HSI2MSI(a, L65 @ R), HSI2MSI(a, LA @ R)
# Y_65_b, Y_A_b = HSI2MSI(b, L65 @ R), HSI2MSI(b, LA @ R)
loss = L1(Y_A_p,Y_A)+L1(Y_65,Y_65_p)+0.3*spectral_varation(recon)
loss.backward()
trainer.step()
sche.step()
if i%10==0:
print('\r{:.3f}\t{:.3f}\t{}'.format(PSNR_GPU(recon,HSI_cuda),SAM_GPU(recon,HSI_cuda)*180/torch.pi,i),end='')
checkpoint = {
"net": Net.state_dict(),
'optimizer': trainer.state_dict(),
}
model_out_path = model_folder + "{}.pth".format(i)
if not os.path.isdir(model_folder):
os.mkdir(model_folder)
torch.save(checkpoint, model_out_path)
recon = tensor2mx(recon)
iv.spectra_metric(HSI, recon).Evaluation()
np.save('D:/Spectral super_resolution/Dual_Illuminances_Spectra_Recovery/Result/'+str(imgidx)+'d565A',recon)
#
# print(abs(rgb-RGB).mean(0).mean(0)*255)
# from PIL import Image
# for i in range(31):
# im = Image.fromarray(np.uint8(HSI[:,:,i].clip(0,1)*255))
# im.save(f'img/{i}.png')
# plt.imshow(iv.spectra().space(recon))
# plt.show()
while True:
x,y = int(input('x')),int(input('y'))
plt.plot(HSI[x,y],'g',recon[x,y],'b')
plt.show()
plt.imshow(iv.spectra().space(recon))
plt.show()