-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathparallel_haze_detection_v2.py
47 lines (34 loc) · 1.68 KB
/
parallel_haze_detection_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import multiprocessing as mp
import os
import numpy as np
from contextlib import closing
from functools import partial
from itertools import product
from common import *
def detect_haze_v2(img0, img1, x, y):
x_end, y_end = x + PatchWidth, y + PatchHeight
patch0, patch1 = img0[y:y_end, x:x_end], img1[y:y_end, x:x_end]
patch_haze = solve_haze_detection_v1(patch0, patch1, verbose=False)
return patch_haze * PatchWeight2D[:, :, np.newaxis]
def detect_haze_parallel_v2(img0, img1):
height, width = img0.shape[:2]
with Stopwatch(f"detect_haze_parallel_v2 {width}x{height}, {width * height} pixels") as st:
max_x_inclusive = width - PatchWidth + 1
max_y_inclusive = height - PatchHeight + 1
num_patches_x = max(1, int(np.ceil(max_x_inclusive / PatchStrideX)))
num_patches_y = max(1, int(np.ceil(max_y_inclusive / PatchStrideY)))
lsx = np.linspace(0, width - PatchWidth, num_patches_x, dtype=int)
lsy = np.linspace(0, height - PatchHeight, num_patches_y, dtype=int)
with closing(mp.Pool(os.cpu_count())) as pool:
patches = [
pool.apply_async(detect_haze_v2, args=(img0, img1, x, y))
for (y, x) in product(lsy, lsx)
]
pool.join()
haze_img = np.zeros((height, width, 4))
weight_sum = np.zeros((height, width, 1))
for i, (y, x) in enumerate(product(lsy, lsx)):
x_end, y_end = x + PatchWidth, y + PatchHeight
haze_img[y:y_end, x:x_end] += patches[i].get()
weight_sum[y:y_end, x:x_end] += PatchWeight2D[:, :, np.newaxis]
return haze_img / weight_sum