-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
547 lines (469 loc) · 20.4 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
import torch
from torch.utils.data import Dataset
import cv2
import albumentations as A
import albumentations.pytorch
import numpy as np
import pandas as pd
import random
import json
CLS_NAME_TO_ID = {'Atelectasis': 0, 'Cardiomegaly': 1, 'Consolidation': 2, 'Edema': 3, 'Lung Opacity': 4, 'Pneumothorax': 5, 'pneumonia': 6}
class DataUnet(Dataset):
def __init__(
self,
root_dir,
image_set,
image_size,
multi_channel_mask = False,
return_yolo_labels = False,
return_text_labels = True,
data_path = None, # to replace the original parent dir
return_organ_mask = False, # for organ segmentation training
no_aug=False,
):
super().__init__()
self.image_size = image_size
self.image_set = image_set
self.return_yolo_labels = return_yolo_labels # used for end-to-end training only
self.multi_channel_mask = multi_channel_mask
self.return_text_labels = return_text_labels
self.class_name_to_id = CLS_NAME_TO_ID
self._labels_path = f"{root_dir}/{image_set}.csv"
self.data_path = data_path
ann_df = pd.read_csv(self._labels_path)
ann_df['class_name'].replace({"No Finding":""}, inplace=True) # replace no finding with empty string
# ann_df['class_name'].replace({"No finding":""}, inplace=True) # replace no finding with empty string
ann_df['class_name'].replace({"Pleural effusion":"Pleural Effusion"}, inplace=True)
self.ann_df = ann_df
self.img_ids = self.ann_df['image_id'].unique().tolist()
self.return_organ_mask = return_organ_mask
if return_yolo_labels: # when returning img, mask, bbox
self.transform = A.Compose([
A.RandomCrop(width=image_size, height=image_size),
# A.HorizontalFlip(p=0.5),
A.Rotate(limit=15, p=0.5),
A.RandomBrightnessContrast(p=0.2),
A.pytorch.transforms.ToTensorV2(),
A.Normalize(
mean=(0.5, 0.5, 0.5),
std=(0.5, 0.5, 0.5)
),
], bbox_params=A.BboxParams(format='yolo', label_fields=['class_id']))
if no_aug: # when returning img and mask
self.transform = A.Compose([
A.augmentations.geometric.resize.Resize(self.image_size, self.image_size, interpolation=cv2.INTER_LINEAR),
A.pytorch.transforms.ToTensorV2(),
])
else: # when returning img and mask
self.transform = A.Compose([
A.augmentations.geometric.resize.Resize(self.image_size, self.image_size, interpolation=cv2.INTER_LINEAR),
# A.RandomCrop(width=self.image_size, height=self.image_size),
# A.HorizontalFlip(p=0.5),
A.Rotate(limit=15, p=0.5),
A.RandomBrightnessContrast(p=0.2),
A.pytorch.transforms.ToTensorV2(),
])
self.norm_transform = A.Compose([
A.Normalize(
mean=(0.5),
std=(0.5)
),])
self.resize_transform =A.Compose( # size of label should be equal to the latent size
[A.augmentations.geometric.resize.Resize(height = image_size//4, width = image_size//4, interpolation=cv2.INTER_LINEAR),
A.pytorch.transforms.ToTensorV2()
])
def __len__(self):
return len(self.img_ids)
def get_mask(self, img_data):
mask = torch.zeros((1, 512, 512)) # keeping it 512 because the annotations are for 512x512 images
for idx, img_data_i in img_data.iterrows():
obj_class = img_data_i["class_id"]
class_name = img_data_i["class_name"]
if obj_class == 14:
# obj_class = 6
x_min_all = -1
y_min_all = -1
y_max_all = -1
x_max_all = -1
else:
x_min_all = img_data_i["x_min"] # original annotations are for 512x512 images
y_min_all = img_data_i["y_min"]
y_max_all = img_data_i["y_max"]
x_max_all = img_data_i["x_max"]
if y_min_all > 0:
mask[0, int(y_min_all):int(y_max_all), int(x_min_all):int(x_max_all)] = self.class_name_to_id[class_name]
return mask # 3 channel mask
def get_labels_volume(self, img_id):
img_data = self.ann_df[self.ann_df['image_id'] == img_id].copy().round(3)
obj_classes = img_data["class_id"].to_list()
x_min_all = img_data["x_min"].fillna(-1).to_list()
y_min_all = img_data["y_min"].fillna(-1).to_list()
y_max_all = img_data["y_max"].fillna(-1).to_list()
x_max_all = img_data["x_max"].fillna(-1).to_list()
if self.multi_channel_mask:
labels = torch.zeros((self.num_class-1, self.image_size, self.image_size)) # single channel mask for all classes
for i, cls_id in enumerate(obj_classes):
mask_idx = self.class_id_mapping[cls_id] - 1 # class_id_mapping starts from 1
if y_min_all[i] > 0:
labels[mask_idx, int(y_min_all[i]):int(y_max_all[i]), int(x_min_all[i]):int(x_max_all[i])] = 1
else: # single channel mask
labels = torch.zeros((1, self.image_size, self.image_size)) # single channel mask for all classes
for i, cls_id in enumerate(obj_classes):
if y_min_all[i] > 0:
labels[:, int(y_min_all[i]):int(y_max_all[i]), int(x_min_all[i]):int(x_max_all[i])] = self.class_id_mapping[cls_id]
return labels
def get_circle(self, size = 256, r = None):
r = r if r is not None else torch.randint(50, 400, (1,)).item()
y = torch.randint(80, 450, (1,)).item()
x = torch.randint(80, 450, (1,)).item()
xx, yy = np.mgrid[:size, :size]
circle = ((xx - y) ** 2 + (yy - x) ** 2) < r**2
return torch.tensor(circle).unsqueeze(0).float()
def get_text_label(self):
pass
def __getitem__(self, idx):
img_id = self.img_ids[idx]
img_data = self.ann_df[self.ann_df['image_id'] == img_id]
if self.data_path is not None: # not used by default
img_path = img_data['path'].tolist()[0].replace('REPLACE THIS ACCORDINGLY', self.data_path)
else:
img_path = img_data['path'].tolist()[0]
img = torch.load(img_path) # image has shape [512, 512]
if img.shape[0] == 1: # quick fix for RSNA images
img = img[0]
if self.return_organ_mask: # get the organ mask
masks = torch.load(img_path[:-3]+"_seg.pt").unsqueeze(0)
else: # get lesion mask
masks = self.get_mask(img_data)
try:
transformed = self.transform(image=img.numpy(), mask=masks[0,:,:].numpy())
except:
print('isss')
masks = transformed['mask'] # original size masks for controlnet
img = transformed['image']
masks = torch.stack([masks, masks, masks]) # conver to 3 channel mask
img = img.expand(3,*img.shape[1:]) # convert to 3 channel
img = (img - img.min())/ (img.max() - img.min())
if self.return_text_labels:
text_label = f"{' '.join(img_data['class_name'].tolist())}"
return {"image":img, "mask": masks, "text_label":text_label, "image_info":img_id}
else:
return {"image":img, "mask": masks.unsqueeze(0)}
# range 0-1
class DataVAE(Dataset):
def __init__(
self,
csv_path,
image_size=256,
is_val=False,
pretraining=True,
reports_path = None,
use_nih_data = False,
use_rsna_data=False,
# return_labels=False,
return_text_labels=False,
return_image_info=False,
return_report=True,
return_image_only=False,
data_path=None,
no_aug=False,
finetuning=False,
controlnet=False,
mask_prob=0.5,
):
super().__init__()
self.root_dir = csv_path
if reports_path is not None:
self.reports_dict = json.load(open(reports_path, 'r'))
self.mask_prob = mask_prob
annotations_df = pd.read_csv(csv_path)
if is_val:
annotations_df = annotations_df[annotations_df['split'] == 'test']
else:
annotations_df = annotations_df[annotations_df['split'].isin(['train', 'validate']) ]
self.label_cols = annotations_df.columns[13:-2] # used for text labels
self.finetuning = finetuning
self.controlnet = controlnet
self.return_text_labels = return_text_labels
# self.return_labels = return_labels
self.return_image_info = return_image_info
self.return_image_only = return_image_only # for VAE training, to speed up training
self.data_path = data_path
# if return_text_labels: # return labels must be true if return_text_labels is true
# self.return_labels = True
annotations_df = annotations_df[annotations_df['ViewPosition']== "AP"]
self.no_aug = no_aug
self.df = annotations_df
if use_nih_data:
print('loading nih data')
annotations_df_nih = pd.read_csv("../dataset/nih_cxr.csv")
annotations_df_nih = annotations_df_nih[annotations_df_nih['View Position']== "AP"]
annotations_df_nih.rename(columns={"Image Index": "dicom_id"}, inplace=True)
label_cols = annotations_df.columns[13:-2]
# mimic_nih_overlapping_cls = [i for i in label_cols if i in annotations_df_nih.columns]
# mimic_nih_overlapping_cls = mimic_nih_overlapping_cls + ['No Finding']
mimic_nih_nonoverlapping_cls = [i for i in label_cols if i not in annotations_df_nih.columns]
annotations_df_nih[mimic_nih_nonoverlapping_cls] = 0
annotations_df_nih = annotations_df_nih[['dicom_id', 'path'] + list(label_cols)]
self.df = pd.concat([self.df, annotations_df_nih], ignore_index=True, join='outer')
if no_aug:
self.transform1 = A.Compose([
A.augmentations.geometric.resize.Resize(image_size, image_size, interpolation=cv2.INTER_LINEAR),
])
self.transform2 = A.Compose([
A.pytorch.transforms.ToTensorV2(),
])
self.transform2_mask = A.Compose([
A.pytorch.transforms.ToTensorV2(),
])
else:
self.transform1 = A.Compose([
A.augmentations.geometric.resize.Resize(image_size, image_size, interpolation=cv2.INTER_LINEAR),
# A.RandomCrop(width=self.image_size, height=self.image_size),
# A.HorizontalFlip(p=0.5),
A.Rotate(limit=15, p=0.5),
])
self.transform2 = A.Compose([
A.RandomBrightnessContrast(p=0.2),
A.pytorch.transforms.ToTensorV2(),
])
self.transform2_mask = A.Compose([
A.pytorch.transforms.ToTensorV2(),
])
def binary_list_to_int(self, input_list):
# Check if the input list contains only 1s and 0s
if all(bit == 0 or bit == 1 for bit in input_list):
# Convert the binary list to a binary string and then to an integer
binary_string = ''.join(map(str, input_list))
decimal_integer = int(binary_string, 2)
return decimal_integer
else:
raise ValueError("Input list should contain only 1s and 0s")
def __len__(self):
return len(self.df)
def get_text_labels(self, labels_ids):
label_classes = [self.label_cols[i] for i in range(len(labels_ids)) if labels_ids[i]==1]
text_labels = ''
for idx, cls in enumerate(label_classes):
if len(label_classes) == 1:
text_labels +=cls
elif idx == len(label_classes)-1:
text_labels += f'{cls}'
else:
text_labels += cls + ' '
return text_labels
def vae_mask_to_image_getitem(self, img_data):
if self.data_path is not None:
img_path = img_data['path'].replace('/share/nvmedata/', self.data_path)
else:
img_path = img_data['path']
mask_path = img_path.replace('mimic_cxr_pt', 'mimic_cxr_pt_mask')
mask = torch.load(mask_path).unsqueeze(0) # mask shape = [512, 512]
img = torch.load(img_path) # image has shape [1, 512, 512]
if self.no_aug:
transformed = self.transform(image=img[0].numpy(), mask=mask[0].numpy())
img = transformed['image']
mask = transformed['mask']
# transformed = self.transform({'image':img, 'mask':mask})# bug
else:
transformed = self.transform1(image = img[0].numpy(),mask=mask[0].numpy())
img = self.transform2(image = transformed['image'])['image']
mask = self.transform2_mask(image = transformed['mask'])['image']
if mask.max()> 0: # loss nan bug fix, some images have all 0 masks
mask = mask/ 4 # or this
img = img.expand(3,*img.shape[1:])
mask = mask.expand(3,*mask.shape[1:]) #TODO: check if we need to normalize mask
if random.random() < self.mask_prob:
return {'image':mask.float(), 'target':img}
else:
return {'image':img, 'target':img}
def diffusion_ft(self, img_data):
vae_data = self.vae_mask_to_image_getitem(img_data) # this has image and target keys
labels_ids = [int(i) for i in img_data[self.label_cols].tolist()]
text_labels = self.get_text_labels(labels_ids)
vae_data['text_labels'] = text_labels # this is used for diffusion forward
image_info = f"{img_data['subject_id']}_{img_data['study_id']}_{img_data['dicom_id']}"
vae_data['image_info'] = image_info
return vae_data
def diffusion_text_labels_to_image_getitem(self, img_data, return_report=False):
if self.data_path is not None:
img_path = img_data['path'].replace('/share/nvmedata/', self.data_path)
else:
img_path = img_data['path']
# image loading
img = torch.load(img_path)
img = img.expand(3,*img.shape[1:]) # convert to 3 channel
if return_report:
report = self.reports_dict[img_data['dicom_id']]['report']
else:
report = ''
labels_ids = [int(i) for i in img_data[self.label_cols].tolist()]
label = self.binary_list_to_int(labels_ids)
if len(img.shape) == 4 and img.shape[0] == 1:
img = img[0]
transformed = self.transform1(image = img.permute(1,2,0).numpy())['image']
img = self.transform2(image = transformed)['image']
if self.return_text_labels:
text_labels = self.get_text_labels(labels_ids)
image_info = f"{img_data['subject_id']}_{img_data['study_id']}_{img_data['dicom_id']}"
return {'image':img, 'label': label, "report": report, "image_info": image_info, "text_labels": text_labels}
return {'image':img, 'label': label, "report": report}
def __getitem__(self, idx):
img_data = self.df.iloc[idx]
# for mask/image to image VAE training
# this can return organ mask and lesion masks both
# this returns image, target
if self.return_image_only:
return self.vae_mask_to_image_getitem(img_data)
# for ddim inversion i.e. vae + diffusion model training
# this returns image, target, text_labels
elif self.finetuning or self.controlnet:
return self.diffusion_ft(img_data)
# for diffusion model training (text labels to image)
# this returns image, label, report, image_info, text_labels
else:
return self.diffusion_text_labels_to_image_getitem(img_data)
def get_bbox_dataloaders(
name,
batch_size,
dataset_path,
im_set,
im_size,
num_workers = 8,
return_yolo_labels = False,
return_text_labels = False,
):
dataset = globals()[name](
dataset_path,
im_set,
im_size,
return_yolo_labels=return_yolo_labels,
return_text_labels=return_text_labels
)
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
drop_last=True,
pin_memory=True,
num_workers=num_workers,
)
return dataloader
# rename to get_pretaining_dataset
def get_dataset_distributed_VAE(
name,
world_size,
rank,
batch_size,
num_workers = 4,
use_rank=True,
custom_sampler = None,
**kwargs
):
train_dataset = globals()[name](
**kwargs
)
val_dataset = globals()[name](
is_val=True,
**kwargs
)
if use_rank:
train_sampler = torch.utils.data.distributed.DistributedSampler(
train_dataset,
num_replicas=world_size,
rank=rank,
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
sampler=train_sampler,
batch_size=batch_size,
shuffle=False,
drop_last=True,
pin_memory=True,
num_workers=num_workers,
)
val_sampler = torch.utils.data.distributed.DistributedSampler(
val_dataset,
num_replicas=world_size,
rank=rank,
)
val_dataloader = torch.utils.data.DataLoader(
val_dataset,
sampler=val_sampler,
batch_size=batch_size,
shuffle=False,
drop_last=True,
pin_memory=True,
num_workers=num_workers,
)
return train_dataloader, val_dataloader
else:
if custom_sampler is not None:
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
drop_last=True,
pin_memory=True,
num_workers=num_workers,
custom_sampler = custom_sampler,
)
val_dataloader = torch.utils.data.DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=True,
drop_last=True,
pin_memory=True,
num_workers=num_workers,
)
else:
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=batch_size,
shuffle=True,
drop_last=True,
pin_memory=True,
num_workers=num_workers,
)
val_dataloader = torch.utils.data.DataLoader(
val_dataset,
batch_size=batch_size,
shuffle=True,
drop_last=True,
pin_memory=True,
)
return train_dataloader, val_dataloader
def get_vindr_dataloader(dataset_path, batch_size, img_set, img_size, num_cls, num_workers = 8, return_yolo_labels=False, return_text_labels=True, data_path=None, return_organ_mask = False, no_aug=False):
dataset = DataUnet(
dataset_path,
img_set,
img_size,
num_cls,
return_yolo_labels=return_yolo_labels,
return_text_labels = return_text_labels,
data_path = data_path,
return_organ_mask=return_organ_mask,
no_aug=no_aug,
)
if return_yolo_labels:
def collate_fn(batch):
return tuple(zip(*batch))
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
drop_last=True,
pin_memory=True,
# num_workers=num_workers, # cant use num_workers > 0 with custom collate_fn
collate_fn=collate_fn, # for yolo labels
)
else:
dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
drop_last=True,
pin_memory=True,
num_workers=num_workers,
)
return dataloader