-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathnaf.py
157 lines (130 loc) · 5.93 KB
/
naf.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import torch
import numpy as np
import json
import random
from collections import deque
import time
import gym
import pybullet_envs
import argparse
#import wandb
from torch.utils.tensorboard import SummaryWriter
from agent import NAF_Agent
def evaluate(frame, eval_runs):
scores = []
with torch.no_grad():
for i in range(eval_runs):
state = test_env.reset()
score = 0
done = 0
while not done:
action = agent.act_without_noise(state)
state, reward, done, _ = test_env.step(action)
score += reward
if done:
scores.append(score)
break
#wandb.log({"Reward": np.mean(scores), "Step": frame})
writer.add_scalar("Reward", np.mean(scores), frame)
def timer(start,end):
""" Helper to print training time """
hours, rem = divmod(end-start, 3600)
minutes, seconds = divmod(rem, 60)
print("\nTraining Time: {:0>2}:{:0>2}:{:05.2f}".format(int(hours),int(minutes),seconds))
def run(args):
""""NAF.
Params
======
"""
frames = args.frames
eval_every = args.eval_every
eval_runs = args.eval_runs
scores = [] # list containing scores from each episode
scores_window = deque(maxlen=100) # last 100 scores
frame = 0
i_episode = 0
state = env.reset()
score = 0
evaluate(0, eval_runs)
for frame in range(1, frames+1):
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
agent.step(state, action, reward, next_state, done)
state = next_state
score += reward
if frame % eval_every == 0:
evaluate(frame, eval_runs)
if done:
scores_window.append(score) # save most recent score
scores.append(score) # save most recent score
print('\rEpisode {}\tFrame [{}/{}] \tAverage Score: {:.2f}'.format(i_episode, frame, frames, np.mean(scores_window)), end="")
if i_episode % 100 == 0:
print('\rEpisode {}\tFrame [{}/{}] \tAverage Score: {:.2f}'.format(i_episode,frame, frames, np.mean(scores_window)))
i_episode +=1
state = env.reset()
score = 0
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-info", type=str, default="Experiment-1",
help="Name of the Experiment (default: Experiment-1)")
parser.add_argument('-env', type=str, default="Pendulum-v0",
help='Name of the environment (default: Pendulum-v0)')
parser.add_argument('-f', "--frames", type=int, default=40000,
help='Number of training frames (default: 40000)')
parser.add_argument("--eval_every", type=int, default=5000,
help="Evaluate the current policy every X steps (default: 5000)")
parser.add_argument("--eval_runs", type=int, default=2,
help="Number of evaluation runs to evaluate - averating the evaluation Performance over all runs (default: 3)")
parser.add_argument('-mem', type=int, default=100000,
help='Replay buffer size (default: 100000)')
parser.add_argument('-per', type=int, choices=[0,1], default=0,
help='Use prioritized experience replay (default: False)')
parser.add_argument('-b', "--batch_size", type=int, default=256,
help='Batch size (default: 128)')
parser.add_argument('-nstep', type=int, default=1,
help='nstep_bootstrapping (default: 1)')
parser.add_argument("-d2rl", type=int, choices=[0,1], default=0,
help="Using D2RL Deep Dense NN Architecture if set to 1 (default: 0)")
parser.add_argument('-l', "--layer_size", type=int, default=256,
help='Neural Network layer size (default: 256)')
parser.add_argument('-g', "--gamma", type=float, default=0.99,
help='Discount factor gamma (default: 0.99)')
parser.add_argument('-t', "--tau", type=float, default=0.005,
help='Soft update factor tau (default: 0.005)')
parser.add_argument('-lr', "--learning_rate", type=float, default=1e-3,
help='Learning rate (default: 1e-3)')
parser.add_argument('-u', "--update_every", type=int, default=1,
help='update the network every x step (default: 1)')
parser.add_argument('-n_up', "--n_updates", type=int, default=1,
help='update the network for x steps (default: 1)')
parser.add_argument('-s', "--seed", type=int, default=0,
help='random seed (default: 0)')
parser.add_argument("--clip_grad", type=float, default=1.0, help="Clip gradients (default: 1.0)")
parser.add_argument("--loss", type=str, choices=["mse", "huber"], default="mse", help="Choose loss type MSE or Huber loss (default: mse)")
args = parser.parse_args()
#wandb.init(project="naf", name=args.info)
#wandb.config.update(args)
writer = SummaryWriter("runs/"+args.info)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print("Using ", device)
env = gym.make(args.env) #CartPoleConti
test_env = gym.make(args.env)
seed = args.seed
np.random.seed(seed)
env.seed(seed)
test_env.seed(seed+1)
action_size = env.action_space.shape[0]
state_size = env.observation_space.shape[0]
agent = NAF_Agent(state_size=state_size,
action_size=action_size,
device=device,
args= args,
writer=writer)
t0 = time.time()
run(args)
t1 = time.time()
timer(t0, t1)
torch.save(agent.qnetwork_local.state_dict(), "NAF_"+args.info+"_.pth")
# save parameter
with open('runs/'+args.info+".json", 'w') as f:
json.dump(args.__dict__, f, indent=2)