-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathddpg.py
365 lines (297 loc) · 14.5 KB
/
ddpg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
import gym
import random
import torch
import numpy as np
import copy
from collections import namedtuple, deque
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.utils import clip_grad_norm_
import torch.optim as optim
import argparse
import wandb
wandb.init(project="DDPG")
def hidden_init(layer):
fan_in = layer.weight.data.size()[0]
lim = 1. / np.sqrt(fan_in)
return (-lim, lim)
class Actor(nn.Module):
"""Actor (Policy) Model."""
def __init__(self, state_size, action_size, seed, fc1_units=256, fc2_units=256):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fc1_units (int): Number of nodes in first hidden layer
fc2_units (int): Number of nodes in second hidden layer
"""
super(Actor, self).__init__()
self.seed = torch.manual_seed(seed)
self.fc1 = nn.Linear(state_size, fc1_units)
self.batch_norm = nn.BatchNorm1d(fc1_units)
self.fc2 = nn.Linear(fc1_units, fc2_units)
self.fc3 = nn.Linear(fc2_units, action_size)
#self.reset_parameters()
def reset_parameters(self):
self.fc1.weight.data.uniform_(*hidden_init(self.fc1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state):
"""Build an actor (policy) network that maps states -> actions."""
x = torch.relu(self.batch_norm(self.fc1(state)))
x = torch.relu(self.fc2(x))
return torch.tanh(self.fc3(x))
class Critic(nn.Module):
"""Critic (Value) Model."""
def __init__(self, state_size, action_size, seed, fcs1_units=256, fc2_units=256):
"""Initialize parameters and build model.
Params
======
state_size (int): Dimension of each state
action_size (int): Dimension of each action
seed (int): Random seed
fcs1_units (int): Number of nodes in the first hidden layer
fc2_units (int): Number of nodes in the second hidden layer
"""
super(Critic, self).__init__()
self.seed = torch.manual_seed(seed)
self.fcs1 = nn.Linear(state_size, fcs1_units)
self.batch_norm = nn.BatchNorm1d(fcs1_units)
self.fc2 = nn.Linear(fcs1_units+action_size, fc2_units)
self.fc3 = nn.Linear(fc2_units, 1)
#self.reset_parameters()
def reset_parameters(self):
self.fcs1.weight.data.uniform_(*hidden_init(self.fcs1))
self.fc2.weight.data.uniform_(*hidden_init(self.fc2))
self.fc3.weight.data.uniform_(-3e-3, 3e-3)
def forward(self, state, action):
"""Build a critic (value) network that maps (state, action) pairs -> Q-values."""
xs = F.relu(self.batch_norm(self.fcs1(state)))
x = torch.cat((xs, action), dim=1)
x = F.relu(self.fc2(x))
return self.fc3(x)
class Agent():
"""Interacts with and learns from the environment."""
def __init__(self, state_size, action_size, random_seed):
"""Initialize an Agent object.
Params
======
state_size (int): dimension of each state
action_size (int): dimension of each action
random_seed (int): random seed
"""
self.state_size = state_size
self.action_size = action_size
self.seed = random.seed(random_seed)
print("Using: ", device)
# Actor Network (w/ Target Network)
self.actor_local = Actor(state_size, action_size, random_seed).to(device)
self.actor_target = Actor(state_size, action_size, random_seed).to(device)
self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR)
# Critic Network (w/ Target Network)
self.critic_local = Critic(state_size, action_size, random_seed).to(device)
self.critic_target = Critic(state_size, action_size, random_seed).to(device)
self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY)
print("Actor: \n", self.actor_local)
print("\nCritic: \n", self.critic_local)
# Noise process
self.noise = OUNoise(action_size, random_seed)
self.epsilon = EPSILON
# Replay memory
self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, random_seed)
def step(self, state, action, reward, next_state, done, timestamp):
"""Save experience in replay memory, and use random sample from buffer to learn."""
# Save experience / reward
self.memory.add(state, action, reward, next_state, done)
# Learn, if enough samples are available in memory
if len(self.memory) > BATCH_SIZE and timestamp % LEARN_EVERY == 0:
for _ in range(LEARN_NUMBER):
experiences = self.memory.sample()
self.learn(experiences, GAMMA)
def act(self, state, add_noise=True):
"""Returns actions for given state as per current policy."""
state = torch.from_numpy(state).float().unsqueeze(0).to(device)
#assert state.shape == (1,3)
self.actor_local.eval()
with torch.no_grad():
action = self.actor_local(state).cpu().data.numpy().squeeze(0)
self.actor_local.train()
if add_noise:
action += self.noise.sample() * self.epsilon
return np.clip(action, -1, 1)
def reset(self):
self.noise.reset()
def learn(self, experiences, gamma):
"""Update policy and value parameters using given batch of experience tuples.
Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
where:
actor_target(state) -> action
critic_target(state, action) -> Q-value
Params
======
experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples
gamma (float): discount factor
"""
states, actions, rewards, next_states, dones = experiences
# ---------------------------- update critic ---------------------------- #
# Get predicted next-state actions and Q values from target models
actions_next = self.actor_target(next_states.to(device))
Q_targets_next = self.critic_target(next_states.to(device), actions_next.to(device))
# Compute Q targets for current states (y_i)
Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
# Compute critic loss
Q_expected = self.critic_local(states, actions)
critic_loss = F.mse_loss(Q_expected, Q_targets)
# Minimize the loss
self.critic_optimizer.zero_grad()
critic_loss.backward()
clip_grad_norm_(self.critic_local.parameters(), 1)
self.critic_optimizer.step()
# ---------------------------- update actor ---------------------------- #
# Compute actor loss
actions_pred = self.actor_local(states)
actor_loss = -self.critic_local(states, actions_pred).mean()
# Minimize the loss
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# ----------------------- update target networks ----------------------- #
self.soft_update(self.critic_local, self.critic_target, TAU)
self.soft_update(self.actor_local, self.actor_target, TAU)
# ----------------------- update epsilon and noise ----------------------- #
self.epsilon *= EPSILON_DECAY
self.noise.reset()
def soft_update(self, local_model, target_model, tau):
"""Soft update model parameters.
θ_target = τ*θ_local + (1 - τ)*θ_target
Params
======
local_model: PyTorch model (weights will be copied from)
target_model: PyTorch model (weights will be copied to)
tau (float): interpolation parameter
"""
for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
class OUNoise:
"""Ornstein-Uhlenbeck process."""
def __init__(self, size, seed, mu=0., theta=0.15, sigma=0.2):
"""Initialize parameters and noise process."""
self.mu = mu * np.ones(size)
self.theta = theta
self.sigma = sigma
self.seed = random.seed(seed)
self.reset()
def reset(self):
"""Reset the internal state (= noise) to mean (mu)."""
self.state = copy.copy(self.mu)
def sample(self):
"""Update internal state and return it as a noise sample."""
x = self.state
dx = self.theta * (self.mu - x) + self.sigma * np.array([random.random() for i in range(len(x))])
self.state = x + dx
return self.state
class ReplayBuffer:
"""Fixed-size buffer to store experience tuples."""
def __init__(self, action_size, buffer_size, batch_size, seed):
"""Initialize a ReplayBuffer object.
Params
======
buffer_size (int): maximum size of buffer
batch_size (int): size of each training batch
"""
self.action_size = action_size
self.memory = deque(maxlen=buffer_size) # internal memory (deque)
self.batch_size = batch_size
self.experience = namedtuple("Experience", field_names=["state", "action", "reward", "next_state", "done"])
self.seed = random.seed(seed)
def add(self, state, action, reward, next_state, done):
"""Add a new experience to memory."""
e = self.experience(state, action, reward, next_state, done)
self.memory.append(e)
def sample(self):
"""Randomly sample a batch of experiences from memory."""
experiences = random.sample(self.memory, k=self.batch_size)
states = torch.from_numpy(np.vstack([e.state for e in experiences if e is not None])).float().to(device)
actions = torch.from_numpy(np.vstack([e.action for e in experiences if e is not None])).float().to(device)
rewards = torch.from_numpy(np.vstack([e.reward for e in experiences if e is not None])).float().to(device)
next_states = torch.from_numpy(np.vstack([e.next_state for e in experiences if e is not None])).float().to(device)
dones = torch.from_numpy(np.vstack([e.done for e in experiences if e is not None]).astype(np.uint8)).float().to(device)
return (states, actions, rewards, next_states, dones)
def __len__(self):
"""Return the current size of internal memory."""
return len(self.memory)
def ddpg(n_episodes=150, max_t=1000, print_every=10):
scores_deque = deque(maxlen=100)
scores = []
average_100_scores = []
time_stamp = 0
for i_episode in range(1, n_episodes+1):
state = env.reset()
agent.reset()
score = 0
for t in range(max_t):
action = agent.act(state)
next_state, reward, done, _ = env.step(action)
agent.step(state, action, reward, next_state, done, time_stamp)
state = next_state
score += reward
time_stamp += 1
if done:
break
scores_deque.append(score)
scores.append(score)
average_100_scores.append(np.mean(scores_deque))
wandb.log({"Reward": score, "Average100": np.mean(scores_deque)})
print('\rEpisode {} Reward {:.2f} Average100 Score: {:.2f}'.format(i_episode, score, np.mean(scores_deque)), end="")
if i_episode % 25 == 0:
torch.save(agent.actor_local.state_dict(), "checkpoint_actor"+str(i_episode)+".pth")
torch.save(agent.critic_local.state_dict(), "checkpoint_critic"+str(i_episode)+".pth")
if i_episode % print_every == 0:
print('\rEpisode {} Reward: {:.2f} Average100 Score: {:.2f}'.format(i_episode,score, np.mean(scores_deque)))
torch.save(agent.actor_local.state_dict(), 'final_actor.pth')
torch.save(agent.critic_local.state_dict(), 'final_critic.pth')
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('-env', type=str, default="Pendulum-v0",
help='Name of the environment (default: Pendulum-v0)')
parser.add_argument('-eps', type=int, default=200,
help='Number of training Episodes (default: 200)')
parser.add_argument('-mem', type=int, default=100000,
help='Replay buffer size (default: 100000)')
parser.add_argument('-b', "--batch_size", type=int, default=128,
help='Batch size (default: 128)')
#parser.add_argument('-l', "--layer_size", type=int, default=256,
# help='Neural Network layer size (default: 256)')
parser.add_argument('-g', "--gamma", type=float, default=0.99,
help='Discount factor gamma (default: 0.99)')
parser.add_argument('-t', "--tau", type=float, default=1e-3,
help='Soft update factor tau (default: 1e-3)')
parser.add_argument('-lr', "--learning_rate", type=float, default=1e-3,
help='Learning rate (default: 1e-3)')
parser.add_argument('-u', "--update_every", type=int, default=1,
help='update the network every x step (default: 1)')
parser.add_argument('-n_up', "--n_updates", type=int, default=1,
help='update the network for x steps (default: 1)')
parser.add_argument('-s', "--seed", type=int, default=0,
help='random seed (default: 0)')
args = parser.parse_args()
wandb.config.update(args)
BUFFER_SIZE = args.mem # replay buffer size
BATCH_SIZE = args.batch_size # minibatch size
GAMMA = args.gamma # discount factor
TAU = args.tau # for soft update of target parameters
LR_ACTOR = args.learning_rate # learning rate of the actor
LR_CRITIC = args.learning_rate # learning rate of the critic
WEIGHT_DECAY = 0#1e-2 # L2 weight decay
LEARN_EVERY = args.update_every
LEARN_NUMBER = args.n_updates
EPSILON = 1.0
EPSILON_DECAY = 1
env = gym.make(args.env)
state_size = env.observation_space.shape[0]
action_size = env.action_space.shape[0]
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
agent = Agent(state_size=state_size, action_size=action_size, random_seed=args.seed)
ddpg(n_episodes=args.eps)