-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmotion_detector.py
58 lines (48 loc) · 1.9 KB
/
motion_detector.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import cv2, time, pandas
from datetime import datetime
first_frame = None
video = cv2.VideoCapture(0, cv2.CAP_DSHOW)
status_list = [None, None]
times = []
df = pandas.DataFrame(columns=["Start", "End"])
while True:
check, frame = video.read()
status = 0
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
gray = cv2.GaussianBlur(gray, (21, 21), 0)
if first_frame is None:
first_frame = gray
continue
# continue will make the loop run again and it wont continue with the next
delta_frame = cv2.absdiff(first_frame, gray)
thresh_frame = cv2.threshold(delta_frame, 30, 255, cv2.THRESH_BINARY)[1]
thresh_frame = cv2.dilate(thresh_frame, None, iterations=2)
(cnts, _) = cv2.findContours(thresh_frame.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# contour area of 10000 is like 100 pixel by 100 pixel. Dependig on the kind of objects you want to detect..
# if you want to detect smaller objects,you should use smaller Contour area
for contour in cnts:
if cv2.contourArea(contour) < 10000:
continue
status = 1
(x, y, w, h) = cv2.boundingRect(contour)
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 3)
status_list.append(status)
if status_list[-1] == 1 and status_list[-2] == 0:
times.append(datetime.now())
if status_list[-1] == 0 and status_list[-2] == 1:
times.append(datetime.now())
cv2.imshow("Vid", gray)
cv2.imshow("Lite", delta_frame)
cv2.imshow("THreshold frame", thresh_frame)
cv2.imshow("color frame", frame)
key = cv2.waitKey(1)
if key == ord("q"):
break
print(status)
# print(status_list)
print(times)
for i in range(0, len(times), 2):
df = df.append({"Start": times[i], "End": times[i + 1]}, ignore_index=True)
df.to_csv("Times.csv")
video.release()
cv2.destroyAllWindows()