-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
173 lines (138 loc) · 6.23 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from flask import Flask, request, jsonify, url_for, redirect
from langchain_community.embeddings import OpenAIEmbeddings
from langchain_community.vectorstores import FAISS
from openai import OpenAI
import os
from model_load import classify_question
from langchain.text_splitter import CharacterTextSplitter
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from investment_gen import answgen
import requests
# from model_load import classify_question
app = Flask(__name__)
# Replace with your actual API key
API_KEY = "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"
embed = OpenAIEmbeddings(openai_api_key=API_KEY)
folder_name = "store"
@app.route('/update_transactions', methods=['POST'])
def update_transactions():
try:
user_id = request.form.get('user_id')
if user_id is None:
return jsonify({'error': 'user_id is required'}), 400
user_folder = os.path.join(folder_name, user_id)
# os.makedirs(user_folder, exist_ok=True)
vector_store_path = os.path.join(user_folder)
print(vector_store_path)
amount = request.form.get('amount')
if amount is None:
return jsonify({'error': 'amount is required'}), 400
transaction_type = request.form.get('type')
if transaction_type is None:
return jsonify({'error': 'type is required'}), 400
category = request.form.get('category')
if category is None:
return jsonify({'error': 'category is required'}), 400
description = request.form.get('description')
if description is None:
return jsonify({'error': 'description is required'}), 400
transaction_text = f"{amount} {transaction_type} {category} {description}"
embedding = embed.embed_query(transaction_text)
if not os.path.exists(vector_store_path):
vector_store = FAISS.from_texts(
texts=[transaction_text], embedding=embed)
vector_store.save_local(vector_store_path)
else:
print("here")
vector_store = FAISS.load_local(
vector_store_path, embeddings=embed, allow_dangerous_deserialization=True)
vector_store.add_texts([transaction_text], embeddings=[embedding])
vector_store.save_local(vector_store_path)
return jsonify({'message': 'Transaction embeddings updated successfully'})
except Exception as e:
return jsonify({'error': f"An error occurred: {str(e)}"}), 500
@app.route('/query', methods=['POST'])
def query():
try:
user_id = request.form.get('user_id')
if user_id is None:
return jsonify({'error': 'user_id is required'}), 400
question = request.form.get('question')
if question is None:
return jsonify({'error': 'question is required'}), 400
# classification = classify_question(question)
# classification = "stock market"
# classification = "personal budgeting"
classification = "financial education"
# Make a POST request to the desired endpoint based on classification
# classification = "personal budgeting"
if classification == "stock market":
response = invest(user_id, question)
elif classification == "personal budgeting":
response = personal_budgeting(user_id, question)
elif classification == "financial education":
response = financial_education(user_id, question)
else:
return jsonify({'error': 'Invalid classification'})
# Process the response as needed
# print(response)
if response['status_code'] == 200:
return jsonify({'message': 'Successful', 'response': response['message']}), 200
else:
return jsonify({'error': 'Failure'}), 500
except Exception as e:
return jsonify({'error': f"An error occurred: {str(e)}"}), 500
# @app.route('/investments')
def invest(user_id, question):
answer1 = answgen(question)
return {'question': question, 'message': answer1, 'status_code': 200}
# @app.route('/personal_budgeting', methods=['POST'])
def personal_budgeting(user_id, question):
try:
if not question or not user_id:
return {'error': 'question and user_id are required', 'status_code': 200}
user_folder = os.path.join(folder_name, user_id)
vector_store_path = user_folder
result = query_llm(vector_store_path, question)
return {'question': question, 'message': result, 'user_id': user_id, 'status_code': 200}
except Exception as e:
return {'error': f"An error occurred: {str(e)}", 'status_code': 500}
def query_llm(vector_store_path, question):
print(vector_store_path)
embed1 = OpenAIEmbeddings(openai_api_key=API_KEY)
vs = FAISS.load_local(str(vector_store_path),
embeddings=embed1, allow_dangerous_deserialization=True)
llm = ChatOpenAI(openai_api_key=API_KEY)
memory = ConversationBufferMemory(
memory_key='chat_history', return_messages=True)
conversation_chain = ConversationalRetrievalChain.from_llm(
llm=llm,
retriever=vs.as_retriever(),
memory=memory
)
result = conversation_chain({"question": str(question)})['answer']
return result
# @app.route('/financial_education')
def financial_education(user_id, question):
try:
prompt = f"Given this message explain in a simple and understandable way: {question}"
client = OpenAI(api_key=API_KEY)
response = client.chat.completions.create(
messages=[
{"role": "user", "content": prompt}
],
max_tokens=140,
model="gpt-3.5-turbo",
temperature=0.7,
)
if response and response.choices:
generated_text = response.choices[0].message.content
return {'question': question, 'message': generated_text}
else:
return {'error': 'No response from the model', 'status_code': 500}
except Exception as e:
return {'error': f"An error occurred: {str(e)}", 'status_code': 500}
if __name__ == '__main__':
app.run(host='0.0.0.0', port=8080, debug=True)