-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patheval.py
118 lines (87 loc) · 3.36 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import torch
import torch.nn as nn
import numpy as np
from model import Net
from dataloader import TrajDataset
from torch.utils.data import DataLoader
import time
import argparse
import matplotlib.pyplot as plt
import cv2
def grad_weighted_l1(output, target, weight=10, min=0.5, max=100):
grad_target = target[:, 1:] - target[:, :-1]
grad_targ_padded = torch.ones(target.shape[0], target.shape[1])
grad_targ_padded[:, :grad_target.shape[1]] = grad_target
# grad_targ_padded = torch.clamp(torch.abs(grad_targ_padded) * weight, min, max)
# grad_targ_padded = torch.abs(grad_targ_padded) * weight
print(grad_targ_padded)
print(torch.abs(target - output))
loss = torch.mean(torch.abs(grad_targ_padded) * weight * torch.abs(target - output))
return loss
def gen_plots(input, preds, gts, pltshow=True):
input = input[0, 0, :, :].cpu()
u1_gt = gts[0][0, :]
u1_pred = preds[0][0, :].cpu().detach().numpy()
u2_gt = gts[1][0, :]
u2_pred = preds[1][0, :].cpu().detach().numpy()
u3_gt = gts[2][0, :]
u3_pred = preds[2][0, :].cpu().detach().numpy()
fig, axs = plt.subplots(4)
axs[0].plot(u1_gt)
axs[0].plot(u1_pred)
axs[0].legend(["x_gt", "x_pred"])
axs[1].plot(u2_gt)
axs[1].plot(u2_pred)
axs[1].legend(["y_gt", "y_pred"])
axs[2].plot(u3_gt)
axs[2].plot(u3_pred)
axs[2].legend(["z_gt", "z_pred"])
axs[3].imshow(input)
if pltshow:
plt.show()
time.sleep(1)
else:
fig.savefig("tmp.png")
img = cv2.imread("tmp.png")
return img
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="")
parser.add_argument("--net_path", help="Net checkpoint", required=True)
parser.add_argument("--data_path", help="Data object", default="/home/adarsh/software/meam517_final/data_v2/")
args = parser.parse_args()
net = Net(x_dim=3,
u_dim=3,
fcn_size_1=250,
fcn_size_2=120,
fcn_size_3=50,
fcn_size_4=75,
).cuda().float()
net.load_state_dict(torch.load(args.net_path))
sample_fname = "/home/adarsh/software/meam517_final/data_v3/"
# dset = TrajDataset(sample_fname, with_x=False, max_u=np.array([25, 25, 10]))
dset = TrajDataset(sample_fname,
with_x=False,
max_u=np.array([25, 25, 10]),
x_dim=3,
with_u=False,
u_dim=3,
toe_xyz=True,
toe_scale=np.array([0.7, 0.5, 0.3]))
criterion = grad_weighted_l1
test_loader = DataLoader(dset, batch_size=1, num_workers=1, shuffle=True)
num_tests = 10
for i_batch, sample_batched in enumerate(test_loader):
if i_batch == num_tests:
break
input, u1_out, u2_out, u3_out = sample_batched
input = input.float().cuda()
u1_out = u1_out.float()
u2_out = u2_out.float()
u3_out = u3_out.float()
# forward!
u1_pred, u2_pred, u3_pred = net(input)
loss = criterion(u1_pred.cpu().float(), u1_out, 15) + \
criterion(u2_pred.cpu().float(), u2_out, 15) + \
criterion(u3_pred.cpu().float(), u3_out, 15)
print({'iteration': i_batch, 'loss': loss.item()})
gen_plots(input, [u1_pred, u2_pred, u3_pred], [u1_out, u2_out, u3_out])