-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbr_corr_bilateral_search.py
587 lines (510 loc) · 23.2 KB
/
br_corr_bilateral_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
#
# Copyright (c) Meta Platforms, Inc. and affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
#
from collections import defaultdict
import logging
import itertools
from typing import DefaultDict, Dict, List, Optional, Tuple
import numpy as np
import torch
from fairdiplomacy.agents.plausible_order_sampling import PlausibleOrderSampler
from fairdiplomacy import pydipcc
from fairdiplomacy.agents.base_search_agent import SearchResult
from fairdiplomacy.agents.bilateral_stats import WeightedAverager
from fairdiplomacy.models.base_strategy_model.load_model import SomeBaseStrategyModel
from fairdiplomacy.agents.base_strategy_model_wrapper import compute_action_logprobs_from_state
from fairdiplomacy.models.consts import POWERS
from fairdiplomacy.typedefs import (
Action,
JointAction,
BilateralConditionalValueTable,
Power,
PowerPolicies,
Policy,
)
from fairdiplomacy.utils.base_strategy_model_multi_gpu_wrappers import (
MultiProcessBaseStrategyModelExecutor,
)
from fairdiplomacy.utils.sampling import sample_p_dict
from fairdiplomacy.utils.order_idxs import ORDER_VOCABULARY_TO_IDX
from fairdiplomacy.utils.game import game_from_two_party_view
class BRCorrBilateralSearchResult(SearchResult):
def __init__(
self,
agent_power: Power,
bp_policies: PowerPolicies,
bilateral_search_policies: PowerPolicies,
power_value_matrices: Dict[Power, BilateralConditionalValueTable],
):
self.agent_power = agent_power
self.bp_policies = bp_policies
assert len(self.bp_policies) == len(POWERS)
self.policies: PowerPolicies = bilateral_search_policies
self.power_value_matrices = power_value_matrices
self.value_to_me: Dict[Tuple[Power, Action], WeightedAverager] = {}
# search results do not contain dead powers and our policies
for power, policy in self.bp_policies.items():
if power not in self.policies and power != agent_power:
assert len(bilateral_search_policies) == 0 or (
len(policy) == 1 and list(policy.keys())[0] == ()
)
self.policies[power] = policy
def set_policy_and_value_for_power(self, power: Power, best_action: Action, best_value: float):
"""Set our policy and decide the value_to_me for my and opponents' actions.
Our policy is simply set as {best_action: 1.0}
The value_to_me[pwr, action'] is the value we will get if we play the best_action and pwr plays action',
which is ectracted from the corresponding joint action value matrix between agent_power and pwr.
"""
assert power == self.agent_power
assert len(self.value_to_me) == 0, self.value_to_me
self.policies[power] = {best_action: 1.0}
agent_power_idx = POWERS.index(self.agent_power)
for power, policy in self.bp_policies.items():
if power == self.agent_power:
self.value_to_me[power, best_action] = WeightedAverager()
self.value_to_me[power, best_action].accum(best_value, 1)
continue
for action in policy:
self.value_to_me[power, action] = WeightedAverager()
if power not in self.power_value_matrices:
assert len(action) == 0
# dead power, value not matter
self.value_to_me[power, action].accum(0, 1)
continue
# our value when we select the best_action and the opponent select this action
value = self.power_value_matrices[power][(best_action, action)][
agent_power_idx
].item()
self.value_to_me[power, action].accum(value, 1)
def get_agent_policy(self) -> PowerPolicies:
return self.policies
def get_population_policy(self) -> PowerPolicies:
return self.policies
def get_bp_policy(self) -> PowerPolicies:
return self.bp_policies
def sample_action(self, power) -> Action:
action = sample_p_dict(self.policies[power])
return action
def avg_utility(self, power: Power) -> float:
"""Returns the average utility for this power, if everyone plays the population policy."""
raise NotImplementedError
def avg_action_utility(self, power: Power, a: Action) -> float:
raise NotImplementedError
def is_early_exit(self) -> bool:
return False
def extract_bp_policy_for_powers(bp_policy: PowerPolicies, powers: List[Power]):
pair_bp: PowerPolicies = {}
for power, policy in bp_policy.items():
if power in powers:
pair_bp[power] = policy
else:
# as if they have been eliminated
pair_bp[power] = {(): 1.0}
return pair_bp
def _sample_conditional_joint_actions(
all_power_base_strategy_model: MultiProcessBaseStrategyModelExecutor,
game: pydipcc.Game,
agent_power: Power,
other_power_per_joint_action: List[Power],
bilateral_joint_actions: List[Tuple[Action, Action]],
num_sample: int,
has_press: bool,
) -> List[JointAction]:
"""sample a list of joint actions conditioning on the partial_joint_actions
return 1-D list of joint actions that can be reshaped as [num_sample x len(partial_joint_actions)]
other_power_per_joint_action must be of the same size as bilateral_joint_actions, and it indicates
for each of those items, who is the other power that the second action in the tuple belongs to.
"""
conditional_orders: List[Action] = [
tuple(order for action in (agent_action, other_action) for order in action)
for (agent_action, other_action) in bilateral_joint_actions
]
other_power_per_joint_action = [
x for x in other_power_per_joint_action for _ in range(num_sample)
]
bilateral_joint_actions = [x for x in bilateral_joint_actions for _ in range(num_sample)]
orders_per_batch = 1 + len(conditional_orders) // all_power_base_strategy_model.num_workers()
orders_per_batch = min(
all_power_base_strategy_model.base_strategy_model_wrapper_kwargs["max_batch_size"]
// num_sample,
orders_per_batch,
)
assert orders_per_batch > 0
futures = []
logging.info(
f"total orders to condition on {len(conditional_orders)}, per batch: {orders_per_batch}"
)
for i in range(0, len(conditional_orders), orders_per_batch):
conditional_orders_per_worker = conditional_orders[i : i + orders_per_batch]
if len(conditional_orders_per_worker) == 0:
continue
futures.append(
all_power_base_strategy_model.compute(
"forward_policy",
[game],
agent_power=None,
has_press=has_press,
temperature=1.0,
top_p=1.0,
conditional_orders=conditional_orders_per_worker,
batch_repeat_interleave=num_sample,
)
)
cond_joint_actions: List[List[Action]] = []
for future in futures:
cond_joint_actions += future.result()[0]
joint_actions = []
assert len(bilateral_joint_actions) == len(cond_joint_actions)
mismatch = 0
match = 0
for i in range(len(bilateral_joint_actions)):
(agent_action, other_action) = bilateral_joint_actions[i]
joint_action = {agent_power: agent_action, other_power_per_joint_action[i]: other_action}
assert len(cond_joint_actions[i]) == len(POWERS)
for power, action in zip(POWERS, cond_joint_actions[i]):
if power not in joint_action:
joint_action[power] = action
else:
match += action == joint_action[power]
mismatch += action != joint_action[power]
joint_actions.append(joint_action)
logging.info(f"sample conditional joint action, mismatch: {mismatch}, match: {match}")
if mismatch > 0.1 * match:
logging.warning(f"Too many mismatches, mismatch: {mismatch}, match: {match}")
return joint_actions
def sample_joint_actions(power_policies: PowerPolicies, num_sample: int) -> List[JointAction]:
joint_actions: List[JointAction] = []
for i in range(num_sample):
joint_action = {}
for power, policy in power_policies.items():
action = sample_p_dict(policy)
joint_action[power] = action
joint_actions.append(joint_action)
return joint_actions
def compute_weights_for_opponent_joint_actions(
joint_actions: List[JointAction],
my_power: Power,
game: pydipcc.Game,
base_strategy_model: SomeBaseStrategyModel,
bp_policy: PowerPolicies,
has_press: bool,
min_unnormalized_weight: float,
max_unnormalized_weight: float,
) -> List[float]:
"""Compute the weight of each joint action of opponents (a1, a2, ..., a6)
Assume that each joint action (are sampled from prod_i P_cfr(a_i), this function
computes [P_joint (a1, a2, ..., a6) + min_prob] / [prod_i P_marginal (a_i)]
joint_action: list of joint action for other powers excluding my_power
base_strategy_model: model to evaluate probability of joint actions for other powers (a1, a2, ..., a6)
bp_policy: probability of actions rescored by independent base_strategy_model
"""
# compute P_joint(a1, a2, ..., a6) as sum_{a0'} P_joint(a0', a1, ..., a6)
logprob_joints = compute_action_logprobs_from_state(
base_strategy_model,
game,
joint_actions,
agent_power=None,
has_press=has_press,
batch_size=len(joint_actions),
)
assert len(logprob_joints) == len(joint_actions), (len(logprob_joints), len(joint_actions))
unnormed_weights = []
weights = []
stats = []
for i, joint_action in enumerate(joint_actions):
joint_logp = logprob_joints[i]
independent_logp = 0
stat = {}
for power, action in joint_action.items():
assert power != my_power
indep_p = bp_policy[power][action]
independent_logp += np.log(indep_p)
stat[f"{power}, {action}"] = f"bp: {indep_p:.5f}, log bp: {np.log(indep_p):.5f}"
stat["indep logp"] = independent_logp
stat["joint logp"] = logprob_joints[i]
weight = np.exp(joint_logp) / np.exp(independent_logp)
unnormed_weights.append(weight)
if min_unnormalized_weight > 0:
weight = max(min_unnormalized_weight, weight)
if max_unnormalized_weight > 0:
weight = min(max_unnormalized_weight, weight)
weights.append(weight)
stat["weight"] = weight
stats.append(stat)
logging.info(
f">> max unnormed weight before clip: {max(unnormed_weights):.6f}, "
f"min unnormed weight before clip: {min(unnormed_weights):.6f}"
)
logging.info(
f">> max_clipped_importance_weight: {max(weights)}, min_clipped_importance_weight: {min(weights)}"
)
hist_counts, log_values = np.histogram(np.log(weights), bins=8)
logging.info(" weight | count")
for cc, vv in zip(hist_counts, np.exp(log_values)):
logging.info(f" {vv:8.2g} | {cc}")
weight_sum = sum(weights)
weights = [w / weight_sum for w in weights]
stats = sorted(stats, key=lambda x: -x["weight"])
logging.debug("top 5 joint actions with the largest un-normalized weight:")
for i in range(5):
logging.debug(f"joint action No.{i}")
for k, v in stats[i].items():
logging.debug(f"{k}, {v}")
stats2 = sorted(stats, key=lambda x: -x["weight"])
logging.debug("bottom 5 joint actions with the smallest un-normalized weight:")
for i in range(5):
logging.debug(f"joint action No.{i}")
for k, v in stats2[i].items():
logging.debug(f"{k}, {v}")
return weights
def compute_best_action_against_reweighted_opponent_joint_actions(
game: pydipcc.Game,
agent_power: Power,
agent_policy: Policy,
opponent_joint_actions: List[JointAction],
weights: List[float],
all_power_base_strategy_model: MultiProcessBaseStrategyModelExecutor,
player_rating: Optional[float],
regularize_lambda: float,
) -> Tuple[Action, float]:
action_values: List[Tuple[Action, float, float, float]] = []
weights_tensor = torch.tensor(weights, dtype=torch.float32)
assert abs(weights_tensor.sum().item() - 1) < 1e-5
full_joint_actions: List[JointAction] = []
for action, prob in agent_policy.items():
for partial in opponent_joint_actions:
assert agent_power not in partial
full = partial.copy()
full[agent_power] = action
full_joint_actions.append(full)
rollout_results = _multi_gpu_base_strategy_model_rollouts(
game, all_power_base_strategy_model, agent_power, full_joint_actions, player_rating
)
assert rollout_results.size(0) == len(
full_joint_actions
), f"{rollout_results.size(0)}, {len(full_joint_actions)}"
assert rollout_results.size(0) == len(opponent_joint_actions) * len(agent_policy)
for i, (action, prob) in enumerate(agent_policy.items()):
values = rollout_results[
i * len(opponent_joint_actions) : (i + 1) * len(opponent_joint_actions),
POWERS.index(agent_power),
]
values = values.squeeze(1).cpu()
assert weights_tensor.size() == values.size()
value = (weights_tensor * values).sum().item()
pice_value = value + regularize_lambda * np.log(max(prob, 1e-6))
action_values.append((action, value, prob, pice_value))
action_values = sorted(action_values, key=lambda x: -x[-1])
logging.info(f"<> best response results using pice lambda {regularize_lambda}")
effective_num_sample = sum(weights) ** 2 / sum([w ** 2 for w in weights])
logging.info(f">> effective num sample: {effective_num_sample:.3f} / {len(weights)}")
logging.info(
f">> max weight: {max(weights) * len(weights):.4f}, min weight: {min(weights) * len(weights):.4f}"
)
logging.info(f" {'pice_v':8s} {'v':8s} {'bp_p':8s} orders")
for action, value, prob, pice_value in action_values:
logging.info(f"|>: {pice_value:8.5f} {value:8.5f} {prob:8.5f} {action}")
best_action, _, _, best_value = action_values[0]
return best_action, best_value
def compute_payoff_matrix_for_all_opponents(
game: pydipcc.Game,
all_power_base_strategy_model: MultiProcessBaseStrategyModelExecutor,
bp_policy: PowerPolicies,
agent_power: Power,
num_sample: int,
has_press: bool,
player_rating: Optional[float],
value_table_cache: Optional[DefaultDict[Power, BilateralConditionalValueTable]],
) -> Dict[Power, BilateralConditionalValueTable]:
"""Compute payoff matrix for all (agent_power, opponent) pairs
returns a dictionary of opponent -> ConditionalValueTable(agent_power, opponent)
ConditionalVable Table is a dict that maps each partial joint action of (agent_power, opponent)
to a [7, 1] tensor that store the value for each power averaged over num_sample joint actions
conditioning on the partial bilateral joint action.
For example, given N actions for agent_power and M actions for other_power,
the dictionary contains:
(agent_action_0, other_action_0) -> Tensor [7, 1]
(agent_action_0, other_action_1) -> Tensor [7, 1]
...
(agent_action_N, other_action_M) -> Tensor [7, 1]
"""
if value_table_cache is None:
value_table_cache = defaultdict(dict)
num_bilateral_joint_action_per_opponent: List[Tuple[Power, int]] = []
cache_hits = 0
# list of all non-cached partial joint actions that we need to condition on
bilateral_joint_actions: List[Tuple[Action, Action]] = []
other_power_per_joint_action: List[Power] = []
for opponent in bp_policy:
if opponent == agent_power:
continue
num_joint_action = 0
power_actions_list: List[List[Action]] = [
[action for action in bp_policy[power]] for power in [agent_power, opponent]
]
for bilateral_joint_action in itertools.product(*power_actions_list):
if bilateral_joint_action in value_table_cache[opponent]:
cache_hits += 1
continue
bilateral_joint_actions.append(bilateral_joint_action)
other_power_per_joint_action.append(opponent)
num_joint_action += 1
num_bilateral_joint_action_per_opponent.append((opponent, num_joint_action))
logging.info(
f"payoff_matrix: {cache_hits}/{len(bilateral_joint_actions) + cache_hits} joint actions cached"
)
if len(bilateral_joint_actions) == 0:
# call cached, nothing to compute
return value_table_cache
joint_actions = _sample_conditional_joint_actions(
all_power_base_strategy_model,
game,
agent_power,
other_power_per_joint_action,
bilateral_joint_actions,
num_sample,
has_press,
)
# compute values for these joint actions
rollout_results = _multi_gpu_base_strategy_model_rollouts(
game, all_power_base_strategy_model, agent_power, joint_actions, player_rating
)
rollout_results = rollout_results.view(
num_sample, len(bilateral_joint_actions), len(POWERS), 1
).mean(0)
logging.info(f"len joint_actions: {len(joint_actions)}, {len(bilateral_joint_actions)}")
start = 0
for opponent, count in num_bilateral_joint_action_per_opponent:
if count == 0:
continue
opponent_bilateral_joint_actions = bilateral_joint_actions[start : start + count]
opponent_rollout_results = rollout_results[start : start + count]
for idx, bilateral_joint_action in enumerate(opponent_bilateral_joint_actions):
value_table_cache[opponent][bilateral_joint_action] = opponent_rollout_results[idx]
start += count
assert start == len(
bilateral_joint_actions
), f"{start * num_sample}, {len(bilateral_joint_actions)}"
return value_table_cache
def filter_invalid_actions_from_policy(
power_policies: PowerPolicies, game: pydipcc.Game
) -> PowerPolicies:
"""Remove actions that cannot be evaluated by base_strategy_model and renormalize policy
We only consider movement phase as br_corr_search only works in movement phase
These invalid actions include:
- wrong number of order
- order out of base_strategy_model vocab
- order impossible given current game state
"""
assert "MOVEMENT" in game.phase, game.phase
filtered_power_policies: PowerPolicies = {}
orderable_locations = game.get_orderable_locations()
all_possible_orders = game.get_all_possible_orders()
for power, policy in power_policies.items():
if len(policy) == 1 and list(policy.keys())[0] == ():
filtered_power_policies[power] = policy
continue
possible_orders = []
for loc in orderable_locations[power]:
for order in all_possible_orders[loc]:
possible_orders.append(order)
sum_prob = 0
filtered_policy = {}
for action, prob in policy.items():
keep = True
if len(action) != len(orderable_locations[power]):
num_missing = len(orderable_locations[power]) - len(action)
logging.warning(
f"WARNING, INVALID ACTION (maybe parlai gave an action base_strategy_model doesn't like, or we have a bug in order formatting): Remove {action}: missing {num_missing} orders"
)
continue
for order in action:
if order not in ORDER_VOCABULARY_TO_IDX:
logging.warning(
f"WARNING, INVALID ACTION (maybe parlai gave an action base_strategy_model doesn't like, or we have a bug in order formatting): Remove {action}: {order} is not in order vocab"
)
keep = False
break
if order not in possible_orders:
logging.warning(
f"WARNING, INVALID ACTION (maybe parlai gave an action base_strategy_model doesn't like, or we have a bug in order formatting): Remove {action}: {order} is not in possible orders"
)
keep = False
break
if keep:
filtered_policy[action] = prob
sum_prob += prob
if len(filtered_policy) == 0:
filtered_policy = {(): 1.0}
elif abs(sum_prob - 1) > 1e-5:
for action, prob in filtered_policy.items():
filtered_policy[action] /= sum_prob
filtered_power_policies[power] = filtered_policy
return filtered_power_policies
def rescore_bp_from_bilateral_views(
game: pydipcc.Game,
bp_policy: PowerPolicies,
agent_power: Power,
order_sampler: PlausibleOrderSampler,
) -> Dict[Power, PowerPolicies]:
"""Rescore bp from all bilateral views between (agent_power, pwr) for pwr in bp_policy
Return value ret[pwr] contains the rescored policy from (agent_power, pwr)'s view.
For each power_policy in ret[pwr], only the policies of agent_power and pwr are rescored.
Policies for the rest of the powers are the same as their bp_policy.
"""
speaking_power = []
game_views = []
list_bp_policy: List[PowerPolicies] = []
list_include_powers: List[List[Power]] = []
living_opponents = []
for opponent, policy in bp_policy.items():
if opponent == agent_power:
continue
if len(policy) == 1 and list(policy.keys())[0] == ():
continue
living_opponents.append(opponent)
speaking_power.append(agent_power)
game_views.append(
game_from_two_party_view(game, agent_power, opponent, add_message_to_all=False)
)
list_include_powers.append([agent_power, opponent])
list_bp_policy.append(bp_policy)
rescored_policies = order_sampler.rescore_actions_parlai_multi_games(
game_views, speaking_power, list_bp_policy, list_include_powers
)
return dict(zip(living_opponents, rescored_policies))
def _multi_gpu_base_strategy_model_rollouts(
game: pydipcc.Game,
all_power_base_strategy_model: MultiProcessBaseStrategyModelExecutor,
agent_power: Power,
joint_actions: List[JointAction],
player_rating: Optional[float],
) -> torch.Tensor:
"""Compute base_strategy_model rollouts on for joint_actions with MultiProcessBaseStrategyModelExecutor
Return tensor of shape [len(joint_actions), 7, 1]
"""
futures = []
num_workers = all_power_base_strategy_model.num_workers()
num_actions = len(joint_actions)
logging.info(f"total rollouts {num_actions}, num workers: {num_workers}")
for i in range(num_workers):
joint_actions_per_worker = joint_actions[
i * num_actions // num_workers : (i + 1) * num_actions // num_workers
]
if len(joint_actions_per_worker) == 0:
continue
futures.append(
all_power_base_strategy_model.rollout(
game,
agent_power=agent_power,
set_orders_dicts=joint_actions_per_worker,
player_rating=player_rating,
)
)
rollout_results = []
for future in futures:
rollout_results.append(future.result())
return torch.cat(rollout_results, 0)