-
Notifications
You must be signed in to change notification settings - Fork 48
/
Copy pathmain.py
743 lines (658 loc) · 35.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
import argparse
import os
import string
import numpy as np
import pandas as pd
import torch
from argparse import Namespace
from torch.utils.data import DataLoader
from trainer import Trainer, TrainerArgs
from TTS.config import load_config
from TTS.tts.configs.align_tts_config import AlignTTSConfig
from TTS.tts.configs.fast_pitch_config import FastPitchConfig
from TTS.tts.configs.glow_tts_config import GlowTTSConfig
from TTS.tts.configs.shared_configs import BaseAudioConfig, BaseDatasetConfig, CharactersConfig
from TTS.tts.configs.tacotron2_config import Tacotron2Config
from TTS.tts.configs.vits_config import VitsConfig
from TTS.tts.datasets import TTSDataset, load_tts_samples
from TTS.tts.models import setup_model
from TTS.tts.models.align_tts import AlignTTS
from TTS.tts.models.forward_tts import ForwardTTS, ForwardTTSArgs
from TTS.tts.models.glow_tts import GlowTTS
from TTS.tts.models.tacotron2 import Tacotron2
from TTS.tts.models.vits import Vits, VitsArgs
from TTS.tts.utils.speakers import SpeakerManager
from TTS.tts.utils.text.tokenizer import TTSTokenizer
from TTS.utils.audio import AudioProcessor
from TTS.utils.io import load_checkpoint
from tqdm.auto import tqdm
from utils import str2bool
def get_arg_parser():
parser = argparse.ArgumentParser(description='Traning and evaluation script for acoustic / e2e TTS model ')
# dataset parameters
parser.add_argument('--dataset_name', default='indictts', choices=['ljspeech', 'indictts', 'googletts'])
parser.add_argument('--language', default='ta', choices=['en', 'ta', 'te', 'kn', 'ml', 'hi', 'mr', 'bn', 'gu', 'or', 'as', 'raj', 'mni', 'brx', 'all'])
parser.add_argument('--dataset_path', default='/nlsasfs/home/ai4bharat/praveens/ttsteam/datasets/{}/{}', type=str) # dataset_name, language #CHANGE
parser.add_argument('--speaker', default='all') # eg. all, male, female, ...
parser.add_argument('--use_phonemes', default=False, type=str2bool)
parser.add_argument('--phoneme_language', default='en-us', choices=['en-us'])
parser.add_argument('--add_blank', default=False, type=str2bool)
parser.add_argument('--text_cleaner', default='multilingual_cleaners', choices=['multilingual_cleaners'])
parser.add_argument('--eval_split_size', default=0.01)
parser.add_argument('--min_audio_len', default=1)
parser.add_argument('--max_audio_len', default=float("inf")) # 20*22050
parser.add_argument('--min_text_len', default=1)
parser.add_argument('--max_text_len', default=float("inf")) # 400
parser.add_argument('--audio_config', default='without_norm', choices=['without_norm', 'with_norm'])
# model parameters
parser.add_argument('--model', default='glowtts', choices=['glowtts', 'vits', 'fastpitch', 'tacotron2', 'aligntts'])
parser.add_argument('--hidden_channels', default=512, type=int)
parser.add_argument('--use_speaker_embedding', default=True, type=str2bool)
parser.add_argument('--use_d_vector_file', default=False, type=str2bool)
parser.add_argument('--d_vector_file', default="", type=str)
parser.add_argument('--d_vector_dim', default=512, type=int)
parser.add_argument('--speaker_encoder_model_path', default='', type=str)
parser.add_argument('--speaker_encoder_config_path', default='', type=str)
parser.add_argument('--use_speaker_encoder_as_loss', default=False, type=str2bool) # only supported in vits, fastpitch
parser.add_argument('--use_ssim_loss', default=False, type=str2bool) # only supported in fastpitch
parser.add_argument('--vocoder_path', default=None, type=str) # external vocoder for speaker encoder loss in fastpitch
parser.add_argument('--vocoder_config_path', default=None, type=str) # external vocoder for speaker encoder loss in fastpitch
parser.add_argument('--use_style_encoder', default=False, type=str2bool)
parser.add_argument('--use_aligner', default=True, type=str2bool) # for fastspeech, fastpitch
parser.add_argument('--use_separate_optimizers', default=False, type=str2bool) # for aligner in fastspeech, fastpitch
parser.add_argument('--use_pre_computed_alignments', default=False, type=str2bool) # for fastspeech, fastpitch
parser.add_argument('--pretrained_checkpoint_path', default=None, type=str) # to load pretrained weights
parser.add_argument('--attention_mask_model_path', default='output/store/ta/fastpitch/best_model.pth', type=str) # set if use_aligner==False and use_pre_computed_alignments==False #CHANGE
parser.add_argument('--attention_mask_config_path', default='output/store/ta/fastpitch/config.json', type=str) # set if use_aligner==False and use_pre_computed_alignments==False #CHANGE
parser.add_argument('--attention_mask_meta_file_name', default='meta_file_attn_mask.txt', type=str) # dataset_name, language # set if use_aligner==False #CHANGE
# training parameters
parser.add_argument('--epochs', default=1000, type=int)
parser.add_argument('--aligner_epochs', default=1000, type=int) # For FastPitch
parser.add_argument('--batch_size', default=8, type=int)
parser.add_argument('--batch_size_eval', default=8, type=int)
parser.add_argument('--batch_group_size', default=0, type=int)
parser.add_argument('--num_workers', default=8, type=int)
parser.add_argument('--num_workers_eval', default=8, type=int)
parser.add_argument('--mixed_precision', default=False, type=str2bool)
parser.add_argument('--compute_input_seq_cache', default=False, type=str2bool)
parser.add_argument('--lr', default=0.001, type=float)
parser.add_argument('--lr_scheduler', default='NoamLR', choices=['NoamLR', 'StepLR', 'LinearLR', 'CyclicLR', 'NoamLRStepConstant', 'NoamLRStepDecay'])
parser.add_argument('--lr_scheduler_warmup_steps', default=4000, type=int) # NoamLR
parser.add_argument('--lr_scheduler_step_size', default=500, type=int) # StepLR
parser.add_argument('--lr_scheduler_threshold_step', default=500, type=int) # NoamLRStep+
parser.add_argument('--lr_scheduler_aligner', default='NoamLR', choices=['NoamLR', 'StepLR', 'LinearLR', 'CyclicLR', 'NoamLRStepConstant', 'NoamLRStepDecay'])
parser.add_argument('--lr_scheduler_gamma', default=0.1, type=float) # StepLR, LinearLR, CyclicLR
# training - logging parameters
parser.add_argument('--run_description', default='None', type=str)
parser.add_argument('--output_path', default='output', type=str)
parser.add_argument('--test_delay_epochs', default=0, type=int)
parser.add_argument('--print_step', default=100, type=int)
parser.add_argument('--plot_step', default=100, type=int)
parser.add_argument('--save_step', default=10000, type=int)
parser.add_argument('--save_n_checkpoints', default=1, type=int)
parser.add_argument('--save_best_after', default=10000, type=int)
parser.add_argument('--target_loss', default=None)
parser.add_argument('--print_eval', default=False, type=str2bool)
parser.add_argument('--run_eval', default=True, type=str2bool)
# distributed training parameters
parser.add_argument('--port', default=54321, type=int)
parser.add_argument('--continue_path', default="", type=str)
parser.add_argument('--restore_path', default="", type=str)
parser.add_argument('--group_id', default="", type=str)
parser.add_argument('--use_ddp', default=True, type=bool)
parser.add_argument('--rank', default=0, type=int)
#parser.add_argument('--gpus', default='0', type=str)
# vits
parser.add_argument('--use_sdp', default=True, type=str2bool)
return parser
def formatter_indictts(root_path, meta_file, **kwargs): # pylint: disable=unused-argument
txt_file = os.path.join(root_path, meta_file)
items = []
with open(txt_file, "r", encoding="utf-8") as ttf:
for line in ttf:
cols = line.split("|")
wav_file = os.path.join(root_path, "wavs-22k", cols[0] + ".wav")
text = cols[1].strip()
speaker_name = cols[2].strip()
items.append({"text": text, "audio_file": wav_file, "speaker_name": speaker_name})
return items
def filter_speaker(samples, speaker):
if speaker == 'all':
return samples
samples = [sample for sample in samples if sample['speaker_name']==speaker]
return samples
def get_lang_chars(language):
if language == 'ta':
lang_chars_df = pd.read_csv('chars/Characters-Tamil.csv')
lang_chars = sorted(list(set(list("".join(lang_chars_df['Character'].values.tolist())))))
print(lang_chars, len(lang_chars))
print("".join(lang_chars))
lang_chars_extra = ['ௗ', 'ஹ', 'ஜ', 'ஸ', 'ஷ']
lang_chars_extra = sorted(list(set(list("".join(lang_chars_extra)))))
print(lang_chars_extra, len(lang_chars_extra))
print("".join(lang_chars_extra))
lang_chars = lang_chars + lang_chars_extra
elif language == 'hi':
lang_chars_df = pd.read_csv('chars/Characters-Hindi.csv')
lang_chars = sorted(list(set(list("".join(lang_chars_df['Character'].values.tolist())))))
print(lang_chars, len(lang_chars))
print("".join(lang_chars))
lang_chars_extra = []
lang_chars_extra = sorted(list(set(list("".join(lang_chars_extra)))))
print(lang_chars_extra, len(lang_chars_extra))
print("".join(lang_chars_extra))
lang_chars = lang_chars + lang_chars_extra
elif language == 'en':
lang_chars = string.ascii_lowercase
return lang_chars
def get_test_sentences(language):
if language == 'ta':
test_sentences = [
"நேஷனல் ஹெரால்ட் ஊழல் குற்றச்சாட்டு தொடர்பாக, காங்கிரஸ் நாடாளுமன்ற உறுப்பினர் ராகுல் காந்தியிடம், அமலாக்கத்துறை, திங்கள் கிழமையன்று பத்து மணி நேரத்திற்கும் மேலாக விசாரணை நடத்திய நிலையில், செவ்வாய்க்கிழமை மீண்டும் விசாரணைக்கு ஆஜராகிறார்.",
"ஒரு விஞ்ஞானி தம் ஆராய்ச்சிகளை எவ்வளவோ கணக்காகவும் முன் யோசனையின் பேரிலும் நுட்பமாகவும் நடத்துகிறார்.",
]
elif language == 'en':
test_sentences = [
"Brazilian police say a suspect has confessed to burying the bodies of missing British journalist Dom Phillips and indigenous expert Bruno Pereira.",
"Protests have erupted in India over a new reform scheme to hire soldiers for a fixed term for the armed forces",
]
elif language == 'mr':
test_sentences = [
"मविआ सरकार अल्पमतात आल्यानंतर अनेक निर्णय घेतले: मुख्यमंत्री एकनाथ शिंदे यांचा आरोप.",
"वर्ध्यात भदाडी नदीच्या पुलावर कार डिव्हायडरला धडकून भीषण अपघात, दोघे गंभीर जखमी.",
]
elif language == 'as':
test_sentences = [
"দেউতাই উইলত স্পষ্টকৈ সেইখিনি মোৰ নামত লিখি দি গৈছে",
"গতিকে শিক্ষাৰ বাবেও এনে এক পূৰ্ব প্ৰস্তুত পৰিৱেশ এটাত",
]
elif language == 'bn':
test_sentences = [
"লোডশেডিংয়ের কল্যাণে পুজোর দুসপ্তাহ আগে কেনাকাটার মাহেন্দ্রক্ষণে, দোকানে শোভা পাচ্ছে, মোমবাতি",
"এক চন্দরা নির্দোষ হইয়াও, আইনের আপাত নিশ্ছিদ্র জালে পড়িয়া প্রাণ দিয়াছিল",
]
elif language == 'brx':
test_sentences = [
"गावनि गोजाम गामि नवथिखौ हरखाब नागारनानै गोदान हादानाव गावखौ दिदोमै फसंथा फित्राय हाबाया जोबोद गोब्राब जायोलै गोमजोर",
"सानहाबदों आं मोथे मोथो",
]
elif language == 'gu':
test_sentences = [
"ઓગણીસો છત્રીસ માં, પ્રથમવાર, એક્રેલીક સેફટી ગ્લાસનું, ઉત્પાદન, શરુ થઈ ગયું.",
"વ્યાયામ પછી પ્રોટીન લેવાથી, સ્નાયુની જે પેશીયોને હાનિ પ્હોંચી હોય છે.",
]
elif language == 'hi':
test_sentences = [
"बिहार, राजस्थान और उत्तर प्रदेश से लेकर हरियाणा, मध्य प्रदेश एवं उत्तराखंड में सेना में भर्ती से जुड़ी 'अग्निपथ स्कीम' का विरोध जारी है.",
"संयुक्त अरब अमीरात यानी यूएई ने बुधवार को एक फ़ैसला लिया कि अगले चार महीनों तक वो भारत से ख़रीदा हुआ गेहूँ को किसी और को नहीं बेचेगा.",
]
elif language == 'kn':
test_sentences = [
"ಯಾವುದು ನಿಜ ಯಾವುದು ಸುಳ್ಳು ಎನ್ನುವ ಬಗ್ಗೆ ಚಿಂತಿಸಿ.",
"ಶಕ್ತಿ ಇದ್ದರೆನ್ನೊಡನೆ ಜಗಳಕ್ಕೆ ಬಾ",
]
elif language == 'ml':
test_sentences = [
"ശിലായുഗകാലം മുതൽ മനുഷ്യർ ജ്യാമിതീയ രൂപങ്ങൾ ഉപയോഗിച്ചുവരുന്നു",
"വാഹനാപകടത്തിൽ പരുക്കേറ്റ അധ്യാപിക മരിച്ചു",
]
elif language == 'mni':
test_sentences = [
"মথং মথং, অসুম কাখিবনা.",
"থেবনা ঙাশিংদু অমমম্তা ইল্লে.",
]
elif language == 'mr':
test_sentences = [
"म्हणुनच महाराच बिरुद मी मानान वागवल",
"घोडयावरून खाली उतरताना घोडेस्वार वृध्दाला म्हणाला, बाबा एवढया कडाक्याच्या थंडीत नदी कडेला तुम्ही किती वेळ बसला होतात.",
]
elif language == 'or':
test_sentences = [
"ସାମାନ୍ୟ ଗୋଟିଏ ବାଳକ, ସେ କ’ଣ ମହାଭାରତ ଯୁଦ୍ଧରେ ଲଢ଼ିବ ",
"ଏ ଘଟଣା ଦେଖିବାକୁ ଶହ ଶହ ଲୋକ ଧାଇଁଲେ ",
]
elif language == 'raj':
test_sentences = [
"कन्हैयालाल सेठिया इत्याद अनुपम काव्य कृतियां है, इंया ई, प्रकति काव्य री दीठ सूं, बादळी, लू",
"नई बीनणियां रो घूंघटो नाक रे ऊपर ऊपर पड़यो सावे है",
]
elif language == 'te':
test_sentences = [
"సింహం అడ్డువచ్చి, తప్పుకో శిక్ష విధించవలసింది నేను అని కోతిని అఙ్ఞాపించింది నక్కకేసి తిరిగి మంత్రి పుంగవా ఈ మూషికాధముడు చోరుడు అని నీకు ఎలా తెలిసింది అని అడిగింది.",
"ఈ మాటలు వింటూనే గాలవుడు, కువలయాశ్వాన్ని ఎక్కి, శత్రుజిత్తువద్దకు వెళ్లి, ఋతుధ్వజుణ్ణి పంపమని కోరాడు, ఋతుధ్వజుడు, కువలయాశ్వాన్ని ఎక్కి, గాలవుడి వెంట, ఆయన ఆశ్రమానికి వెళ్ళాడు.",
]
elif language == 'all':
test_sentences = [
"ஒரு விஞ்ஞானி தம் ஆராய்ச்சிகளை எவ்வளவோ கணக்காகவும் முன் யோசனையின் பேரிலும் நுட்பமாகவும் நடத்துகிறார்.",
"ఇక బిన్ లాడెన్ తర్వాతి అగ్ర నాయకులు అయ్మన్ అల్ జవహరి తదితర ముఖ్యుల 'తలలు నరికి ఈటెలకు గుచ్చండి' అనేవి ఇతర ఆదేశాలు.",
"ಕೆಲ ದಿನಗಳಿಂದ ಮಳೆ ಕಡಿಮೆಯಾದಂತೆ ತೋರಿದ್ದರೂ ಕಳೆದ ಎರಡು ದಿನಗಳಲ್ಲಿ ರಾಜ್ಯದ ಹಲವೆಡೆ ಮತ್ತೆ ಮಳೆ ಸುರಿದಿದ್ದು ಇದರ ಪರಿಣಾಮದಿಂದಾಗಿ ಮತ್ತೆ ನೀರಿನ ಹರಿವು ಏರುವ ಪಥದಲ್ಲಿದೆ.",
"കോമണ്വെല്ത്ത് ഗെയിംസ് വനിതാ ക്രിക്കറ്റ് സെമി ഫൈനലില് ഇംഗ്ലണ്ടിനെ ആവേശപ്പോരില് വീഴ്ത്തി ഇന്ത്യ ഫൈനലിലെത്തി."
]
else:
raise ValueError("test_sentences are not defined")
return test_sentences
def compute_attention_masks(model_path, config_path, meta_save_path, data_path, dataset_metafile, args, use_cuda=True):
dataset_name = args.dataset_name
language = args.language
batch_size = 16
meta_save_path = meta_save_path.format(dataset_name, language)
C = load_config(config_path)
ap = AudioProcessor(**C.audio)
# load the model
model = setup_model(C)
model, _ = load_checkpoint(model, model_path, use_cuda, True)
# data loader
dataset_config = BaseDatasetConfig(
name=dataset_name,
meta_file_train=dataset_metafile,
path=data_path,
language=language
)
samples, _ = load_tts_samples(
dataset_config,
eval_split=False,
formatter=formatter_indictts
)
dataset = TTSDataset(
outputs_per_step=model.decoder.r if "r" in vars(model.decoder) else 1,
compute_linear_spec=False,
ap=ap,
samples=samples,
tokenizer=model.tokenizer,
phoneme_cache_path=C.phoneme_cache_path,
)
loader = DataLoader(
dataset,
batch_size=batch_size,
num_workers=4,
collate_fn=dataset.collate_fn,
shuffle=False,
drop_last=False,
)
# compute attentions
file_paths = []
with torch.no_grad():
for data in tqdm(loader):
# setup input data
text_input = data["token_id"]
text_lengths = data["token_id_lengths"]
#linear_input = data[3]
mel_input = data["mel"]
mel_lengths = data["mel_lengths"]
#stop_targets = data[6]
item_idxs = data["item_idxs"]
# dispatch data to GPU
if use_cuda:
text_input = text_input.cuda()
text_lengths = text_lengths.cuda()
mel_input = mel_input.cuda()
mel_lengths = mel_lengths.cuda()
if C.model == 'glowtts':
model_outputs = model.forward(text_input, text_lengths, mel_input, mel_lengths)
#model_outputs = model.inference(text_input, text_lengths, mel_input, mel_lengths)
elif C.model == 'fast_pitch':
model_outputs = model.inference2(text_input, text_lengths)
else:
raise ValueError
alignments = model_outputs["alignments"].detach()
for idx, alignment in enumerate(alignments):
item_idx = item_idxs[idx]
# interpolate if r > 1
alignment = (
torch.nn.functional.interpolate(
alignment.transpose(0, 1).unsqueeze(0),
size=None,
scale_factor=model.decoder.r if "r" in vars(model.decoder) else 1,
mode="nearest",
align_corners=None,
recompute_scale_factor=None,
)
.squeeze(0)
.transpose(0, 1)
)
# remove paddings
alignment = alignment[: mel_lengths[idx], : text_lengths[idx]].cpu().numpy()
# set file paths
wav_file_name = os.path.basename(item_idx)
align_file_name = os.path.splitext(wav_file_name)[0] + "_attn.npy"
file_path = item_idx.replace(wav_file_name, align_file_name)
# save output
wav_file_abs_path = os.path.abspath(item_idx)
file_abs_path = os.path.abspath(file_path)
file_paths.append([wav_file_abs_path, file_abs_path])
np.save(file_path, alignment)
# output metafile
with open(meta_save_path, "w", encoding="utf-8") as f:
for p in file_paths:
f.write(f"{p[0]}|{p[1]}\n")
print(f" >> Metafile created: {meta_save_path}")
return True
def main(args):
if args.speaker == 'all':
meta_file_train="metadata_train.csv"
meta_file_val="metadata_test.csv"
else:
meta_file_train=f"metadata_train_{args.speaker}.csv"
meta_file_val=f"metadata_test_{args.speaker}.csv"
# set dataset config
dataset_config = BaseDatasetConfig(
name=args.dataset_name,
meta_file_train=meta_file_train,
meta_file_val=meta_file_val,
path=args.dataset_path.format(args.dataset_name, args.language),
language=args.language
)
#lang_chars = get_lang_chars(args.language)
samples, _ = load_tts_samples(
dataset_config,
eval_split=False,
formatter=formatter_indictts)
samples = filter_speaker(samples, args.speaker)
texts = "".join(item["text"] for item in samples)
lang_chars = sorted(list(set(texts)))
print(lang_chars, len(lang_chars))
del samples, texts
# set audio config
audio_config = BaseAudioConfig(
trim_db=60.0, # default: 45
#mel_fmin=0.0, # default: 0
mel_fmax=8000, # default: None
log_func="np.log", # default: np.log10
spec_gain=1.0, # default: 20
signal_norm=False, # default: True
)
audio_configs = {
"without_norm": BaseAudioConfig(
trim_db=60.0, # default: 45
#mel_fmin=0.0, # default: 0
mel_fmax=8000, # default: None
log_func="np.log", # default: np.log10
spec_gain=1.0, # default: 20
signal_norm=False, # default: True
),
"with_norm": BaseAudioConfig(
trim_db=60.0, # default: 45
#mel_fmin=0.0, # default: 0
mel_fmax=8000, # default: None
log_func="np.log10", # default: np.log10
spec_gain=20, # default: 20
signal_norm=True, # default: True
),
}
audio_config = audio_configs[args.audio_config]
# set characters config
characters_config = CharactersConfig(
characters_class="TTS.tts.models.vits.VitsCharacters",
pad="<PAD>",
eos="<EOS>",
bos="<BOS>",
blank="<BLNK>",
#characters="!¡'(),-.:;¿?$%&‘’‚“`”„" + "".join(lang_chars),
characters="".join(lang_chars),
punctuations="!¡'(),-.:;¿? ",
phonemes=None
)
if args.lr_scheduler == 'NoamLR':
lr_scheduler_params = {
"warmup_steps": args.lr_scheduler_warmup_steps
}
elif args.lr_scheduler == 'StepLR':
lr_scheduler_params = {
"step_size": args.lr_scheduler_step_size,
"gamma": args.lr_scheduler_gamma
}
elif args.lr_scheduler == 'LinearLR':
lr_scheduler_params = {
"start_factor": args.lr_scheduler_gamma,
"total_iters": args.lr_scheduler_warmup_steps
}
elif args.lr_scheduler == 'CyclicLR':
lr_scheduler_params = {
"base_lr": args.lr * args.lr_scheduler_gamma,
"max_lr": args.lr,
"cycle_momentum": False
}
elif args.lr_scheduler in ['NoamLRStepConstant', 'NoamLRStepDecay'] :
lr_scheduler_params = {
"warmup_steps": args.lr_scheduler_warmup_steps,
"threshold_step": args.lr_scheduler_threshold_step
}
else:
raise NotImplementedError()
if args.lr_scheduler_aligner == 'NoamLR':
lr_scheduler_aligner_params = {
"warmup_steps": args.lr_scheduler_warmup_steps
}
elif args.lr_scheduler_aligner == 'StepLR':
lr_scheduler_aligner_params = {
"step_size": args.lr_scheduler_step_size
}
elif args.lr_scheduler_aligner in ['NoamLRStepConstant', 'NoamLRStepDecay'] :
lr_scheduler_aligner_params = {
"warmup_steps": args.lr_scheduler_warmup_steps,
"threshold_step": args.lr_scheduler_threshold_step
}
else:
raise NotImplementedError()
# set base tts config
base_tts_config = Namespace(
# input representation
audio=audio_config,
use_phonemes=args.use_phonemes,
phoneme_language=args.phoneme_language,
compute_input_seq_cache=args.compute_input_seq_cache,
text_cleaner=args.text_cleaner,
phoneme_cache_path=os.path.join(args.output_path, "phoneme_cache"),
characters=characters_config,
add_blank=args.add_blank,
# dataset
datasets=[dataset_config],
min_audio_len=args.min_audio_len,
max_audio_len=args.max_audio_len,
min_text_len=args.min_text_len,
max_text_len=args.max_text_len,
# data loading
num_loader_workers=args.num_workers,
num_eval_loader_workers=args.num_workers_eval,
# model
use_d_vector_file=args.use_d_vector_file,
d_vector_file=args.d_vector_file,
d_vector_dim=args.d_vector_dim,
# trainer - run
output_path=args.output_path,
project_name='indic-tts-acoustic',
run_name=f'{args.language}_{args.model}_{args.dataset_name}_{args.speaker}_{args.run_description}',
run_description=args.run_description,
# trainer - loggging
print_step=args.print_step,
plot_step=args.plot_step,
dashboard_logger='wandb',
wandb_entity='indic-asr',
# trainer - checkpointing
save_step=args.save_step,
save_n_checkpoints=args.save_n_checkpoints,
save_best_after=args.save_best_after,
# trainer - eval
print_eval=args.print_eval,
run_eval=args.run_eval,
# trainer - test
test_delay_epochs=args.test_delay_epochs,
# trainer - distibuted training
distributed_url=f'tcp://localhost:{args.port}',
# trainer - training
mixed_precision=args.mixed_precision,
epochs=args.epochs,
batch_size=args.batch_size,
eval_batch_size=args.batch_size_eval,
batch_group_size=args.batch_group_size,
lr=args.lr,
lr_scheduler=args.lr_scheduler,
lr_scheduler_params = lr_scheduler_params,
# test
#test_sentences_file=f'test_sentences/{args.language}.txt',
test_sentences=get_test_sentences(args.language),
eval_split_size=args.eval_split_size,
)
base_tts_config = vars(base_tts_config)
# set model config
if args.model == 'glowtts':
config = GlowTTSConfig(
**base_tts_config,
use_speaker_embedding=args.use_speaker_embedding,
)
elif args.model == "vits":
vitsArgs = VitsArgs(
use_speaker_embedding=args.use_speaker_embedding,
use_sdp=args.use_sdp,
use_speaker_encoder_as_loss=args.use_speaker_encoder_as_loss,
speaker_encoder_config_path=args.speaker_encoder_config_path,
speaker_encoder_model_path=args.speaker_encoder_model_path,
)
config = VitsConfig(
**base_tts_config,
model_args=vitsArgs,
use_speaker_embedding=args.use_speaker_embedding,
)
elif args.model == "fastpitch":
if args.use_speaker_encoder_as_loss:
return_wav = True
compute_linear_spec = True
assert args.vocoder_path is not None
assert args.vocoder_config_path is not None
else:
return_wav = False
compute_linear_spec = False
args.vocoder_path = None
args.vocoder_config_path = None
config = FastPitchConfig(
**base_tts_config,
model_args = ForwardTTSArgs(
use_aligner=args.use_aligner,
use_separate_optimizers=args.use_separate_optimizers,
hidden_channels=args.hidden_channels,
use_speaker_encoder_as_loss=args.use_speaker_encoder_as_loss,
speaker_encoder_config_path=args.speaker_encoder_config_path,
speaker_encoder_model_path=args.speaker_encoder_model_path,
vocoder_path=args.vocoder_path,
vocoder_config_path=args.vocoder_config_path
),
use_speaker_embedding=args.use_speaker_embedding,
use_ssim_loss = args.use_ssim_loss,
compute_f0=True,
f0_cache_path=os.path.join(args.output_path, "f0_cache"),
sort_by_audio_len=True,
max_seq_len=500000,
return_wav= return_wav,
compute_linear_spec=compute_linear_spec,
aligner_epochs=args.aligner_epochs,
lr_scheduler_aligner=args.lr_scheduler_aligner,
lr_scheduler_aligner_params = lr_scheduler_aligner_params
)
if not config.model_args.use_aligner:
metafile = 'metadata.csv'
attention_mask_meta_save_path = f'{args.dataset_path}/{args.attention_mask_meta_file_name}'
if not args.use_pre_computed_alignments:
print("[START] Computing attention masks...")
compute_attention_masks(args.attention_mask_model_path, args.attention_mask_config_path, attention_mask_meta_save_path, args.dataset_path, metafile, args)
print("[END] Computing attention masks")
dataset_config.meta_file_attn_mask = attention_mask_meta_save_path
elif args.model == "tacotron2":
config = Tacotron2Config(
**base_tts_config,
use_speaker_embedding=args.use_speaker_embedding,
ga_alpha=0.0,
decoder_loss_alpha=0.25,
postnet_loss_alpha=0.25,
postnet_diff_spec_alpha=0,
decoder_diff_spec_alpha=0,
decoder_ssim_alpha=0,
postnet_ssim_alpha=0,
r=2,
attention_type="dynamic_convolution",
double_decoder_consistency=False,
)
elif args.model == "aligntts":
config = AlignTTSConfig(
**base_tts_config,
)
# set preprocessors
ap = AudioProcessor.init_from_config(config)
tokenizer, config = TTSTokenizer.init_from_config(config)
# load data
train_samples, eval_samples = load_tts_samples(
dataset_config,
eval_split=True,
#eval_split_size=config.eval_split_size,
formatter=formatter_indictts
)
train_samples = filter_speaker(train_samples, args.speaker)
eval_samples = filter_speaker(eval_samples, args.speaker)
print("Train Samples: ", len(train_samples))
print("Eval Samples: ", len(eval_samples))
# set speaker manager
if args.use_speaker_embedding:
speaker_manager = SpeakerManager()
speaker_manager.set_ids_from_data(train_samples + eval_samples, parse_key="speaker_name")
elif args.use_d_vector_file:
speaker_manager = SpeakerManager(
d_vectors_file_path=args.d_vector_file,
encoder_model_path=args.speaker_encoder_model_path,
encoder_config_path=args.speaker_encoder_config_path,
use_cuda=True)
else:
speaker_manager = None
# load model
if args.model == 'glowtts':
model = GlowTTS(config, ap, tokenizer, speaker_manager=speaker_manager)
elif args.model == 'vits':
model = Vits(config, ap, tokenizer, speaker_manager=speaker_manager)
elif args.model == 'fastpitch':
model = ForwardTTS(config, ap, tokenizer, speaker_manager=speaker_manager)
elif args.model == 'tacotron2':
model = Tacotron2(config, ap, tokenizer, speaker_manager=speaker_manager)
elif args.model == 'aligntts':
model = AlignTTS(config, ap, tokenizer, speaker_manager=speaker_manager)
if args.speaker == 'all':
config.num_speakers = speaker_manager.num_speakers
if hasattr(config, 'model_args') and hasattr(config.model_args, 'num_speakers'):
config.model_args.num_speakers = speaker_manager.num_speakers
else:
config.num_speakers = 1
if args.pretrained_checkpoint_path:
checkpoint_state = torch.load(args.pretrained_checkpoint_path)['model']
print(" > Partial model initialization...")
model_dict = model.state_dict()
for k, v in checkpoint_state.items():
if k not in model_dict:
print(" | > Layer missing in the model definition: {}".format(k))
# 1. filter out unnecessary keys
pretrained_dict = {k: v for k, v in checkpoint_state.items() if k in model_dict}
# 2. filter out different size layers
pretrained_dict = {k: v for k, v in pretrained_dict.items() if v.numel() == model_dict[k].numel()}
# 3. overwrite entries in the existing state dict
model_dict.update(pretrained_dict)
model.load_state_dict(model_dict)
print(" | > {} / {} layers are restored.".format(len(pretrained_dict), len(model_dict)))
missed_keys = set(model_dict.keys())-set(pretrained_dict.keys())
print(" | > Missed Keys:", missed_keys)
# set trainer
trainer = Trainer(
TrainerArgs(continue_path=args.continue_path, restore_path=args.restore_path, use_ddp=args.use_ddp, rank=args.rank, group_id=args.group_id),
config,
args.output_path,
model=model,
train_samples=train_samples,
eval_samples=eval_samples
)
# run training
trainer.fit()
if __name__ == '__main__':
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
parser = get_arg_parser()
args = parser.parse_args()
args.dataset_path = args.dataset_path.format(args.dataset_name ,args.language)
if args.use_style_encoder:
assert args.use_speaker_embedding
if not os.path.exists(args.output_path):
os.makedirs(args.output_path)
main(args)