forked from COSIMA/initial_conditions_access-om2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup_WOA_initial_conditions.py
124 lines (106 loc) · 4.79 KB
/
setup_WOA_initial_conditions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
#!/usr/bin/env python
####################################################
## ##
## This script creates masks of near land points ##
## ##
####################################################
# import modules
from glob import glob
import os,sys
import numpy as np
import netCDF4 as nc
import matplotlib.pyplot as plt
# paths
src_data_dir = '/g/data/ik11/inputs/WOA13v2/averaged_decades/'
# output paths
dst_data_dir = '/g/data/ik11/inputs/access-om2/woa13/monthly/'
print('Importing WOA13 raw data')
mon = ['01','02','03','04','05','06','07','08','09','10','11','12']
deepmon = ['13','13','13','14','14','14','15','15','15','16','16','16']
i = 0
for mm in range(0,len(mon)):
i = i+1
# get upper ocean temp data:
woa_file = src_data_dir+'woa13_decav_t'+mon[mm]+'_04v2.nc'
print(woa_file)
ncFile = nc.Dataset(woa_file)
lat = ncFile.variables['lat'][...]
#lat_bnds = ncFile.variables['lat_bnds'][...]
#lon_bnds = ncFile.variables['lon_bnds'][...]
#depth_upper_bnds = ncFile.variables['depth_bnds'][...]
depth_upper = ncFile.variables['depth'][...]
lon = ncFile.variables['lon'][...]
t_in_situ_upper = ncFile.variables['t_an'][0,...]
#time = ncFile.variables['time'][...]
# get upper ocean salinity data:
#woa_file = data_dir+'woa13_decav_s01_04v2.nc'
woa_file = src_data_dir+'woa13_decav_s'+mon[mm]+'_04v2.nc'
print(woa_file)
ncFile = nc.Dataset(woa_file)
s_practical_upper = ncFile.variables['s_an'][0,...]
# get lower ocean temp data:
#woa_file = data_dir+'woa13_decav_t13_04v2.nc'
woa_file = src_data_dir+'woa13_decav_t'+deepmon[mm]+'_04v2.nc'
print(woa_file)
ncFile = nc.Dataset(woa_file)
depth_lower = ncFile.variables['depth'][...]
t_in_situ_lower = ncFile.variables['t_an'][0,...]
# get lower ocean salinity data:
#woa_file = data_dir+'woa13_decav_s13_04v2.nc'
woa_file = src_data_dir+'woa13_decav_s'+deepmon[mm]+'_04v2.nc'
print(woa_file)
ncFile = nc.Dataset(woa_file)
s_practical_lower = ncFile.variables['s_an'][0,...]
# combine January for upper ocean with winter below 1500m:
t_in_situ = np.copy(t_in_situ_lower)
t_in_situ[:len(depth_upper),:,:] = t_in_situ_upper
s_practical = np.copy(s_practical_lower)
s_practical[:len(depth_upper),:,:] = s_practical_upper
depth = depth_lower
del t_in_situ_lower,t_in_situ_upper,s_practical_lower,s_practical_upper
# mask t_in_situ and s_practical before doing calculations:
t_in_situ = np.ma.masked_where(t_in_situ>1000,t_in_situ)
s_practical = np.ma.masked_where(s_practical>1000,s_practical)
# convert in situ temperature to conservative temperature:
import gsw
print('Calculating pressure from depth')
longitude,latitude=np.meshgrid(lon,lat)
depth_tile = (np.tile(depth,(len(lat),1))).swapaxes(0,1)
pressure = gsw.p_from_z(-depth_tile,lat)
pressure_tile = np.tile(pressure,(1440,1,1)).swapaxes(0,2).swapaxes(0,1)
del pressure
# having memory issues, so do level by level:
s_absolute = np.zeros_like(s_practical)
for kk in range(0,len(depth)):
if kk%10 == 0:
print('Calculating absolute salinity for level '+str(kk))
s_absolute[kk,:,:] = gsw.SA_from_SP(s_practical[kk,:,:],pressure_tile[kk,:,:],
longitude,latitude)
del longitude,latitude
print('Calculating conservative temperature from in situ temperature')
t_conservative = gsw.CT_from_t(s_absolute,t_in_situ,pressure_tile)
# save to netcdf
#save_file = data_dir + 'woa13_decav_ts_jan_04v2.nc'
save_file = dst_data_dir + 'woa13_decav_ts_'+mon[mm]+'_04v2.nc'
print(save_file)
ncFile = nc.Dataset(save_file,'r+')
# overwrite time
ncFile.variables['time'][0] = i
ncFile.variables['time'].units = 'months since 0001-01-01 00:00:00'
# overwrite salinity with data including January near surface values:
ncFile.variables['practical_salinity'][0,...] = s_practical
# add variable for conservative temperature:
t_var = ncFile.createVariable('conservative_temperature', 'f4', ('time','depth',\
'lat','lon'),fill_value=9.96921e+36)
t_var.units = 'degrees celsius'
t_var.long_name = 'conservative temperature calculated using teos10 from objectively'+\
' analysed mean fields for sea_water_temperature'
t_var[0,:] = t_conservative
#s_var = ncFile.createVariable('practical_salinity', 'f4', ('time','depth','lat','lon'),fill_value=9.96921e+36)
#s_var.units = '1'
#s_var.grid_mapping = "crs"
#s_var.long_name = 'Objectively analyzed mean fields for sea_water_salinity at standard depth levels.'
#s_var.missing_value = 9.96921e+36
#s_practical[np.where(np.isnan(s_practical)==True)] = 9.96921e+36
#s_var[0,:] = s_practical
ncFile.close()