-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathSegmentTreeDynamicSparse.ts
342 lines (311 loc) · 10.5 KB
/
SegmentTreeDynamicSparse.ts
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/* eslint-disable no-inner-declarations */
// 单点修改, 区间查询
// 大多数位置的元素始终是单位元素的动态开点线段树.(非常稀疏)
// !其优点是不使用持久化时, 节点数可以保持在 O(N) 左右.
// 当持久化时时,可能会变得更慢。
// API
// new SegmentTreeDynamicSparse(start, end, e, op, persistent)
// newRoot()
// get(index, root)
// set(index, value, root)
// update(index, value, root)
// query(start, end, root)
// queryAll(root)
// maxRight(start, check, root)
// minLeft(end, check, root)
/**
* !不要用数组`[]`代替对象`{}`.数组会导致性能下降.
*/
type SegNode<E> = {
left: SegNode<E> | undefined
right: SegNode<E> | undefined
index: number
data: E
sum: E
}
class SegmentTreeDynamic<E = number> {
private static _isPrimitive(o: unknown): o is number | string | boolean | symbol | bigint | null | undefined {
return o === null || (typeof o !== 'object' && typeof o !== 'function')
}
private readonly _lower: number
private readonly _upper: number
private readonly _e: () => E
private readonly _op: (a: E, b: E) => E
private readonly _persistent: boolean
private _root: SegNode<E>
/**
* 单点修改区间查询的动态开点线段树.线段树维护的值域为`[start, end)`.
* @param start 值域下界.start>=0.
* @param end 值域上界.
* @param e 幺元.
* @param op 结合律的二元操作.
* @param persistent 是否持久化.持久化后,每次修改都会新建一个结点,否则会复用原来的结点.
*/
constructor(start: number, end: number, e: () => E, op: (a: E, b: E) => E, persistent = false) {
if (persistent && !SegmentTreeDynamic._isPrimitive(e())) {
throw new Error('persistent is only supported when e() return primitive values')
}
this._lower = start
this._upper = end + 5
this._e = e
this._op = op
this._persistent = persistent
this._root = this.newRoot()
}
newRoot(): SegNode<E> {
return undefined as any // nil
}
get(index: number, root: SegNode<E> = this._root): E {
if (index < this._lower || index >= this._upper) return this._e()
return this._get(root, index)
}
set(index: number, value: E, root: SegNode<E> = this._root): SegNode<E> {
if (index < this._lower || index >= this._upper) return root
const newRoot = this._set(root, this._lower, this._upper, index, value)
this._root = newRoot
return newRoot
}
update(index: number, value: E, root: SegNode<E> = this._root): SegNode<E> {
if (index < this._lower || index >= this._upper) return root
const newRoot = this._update(root, this._lower, this._upper, index, value)
this._root = newRoot
return newRoot
}
/**
* 查询区间`[start,end)`的聚合值.
* {@link _lower} <= start <= end <= {@link _upper}.
*/
query(start: number, end: number, root: SegNode<E> = this._root): E {
if (start < this._lower) start = this._lower
if (end > this._upper) end = this._upper
if (start >= end) return this._e()
let res = this._e()
const _query = (node: SegNode<E> | undefined, l: number, r: number, ql: number, qr: number) => {
if (!node) return
ql = l > ql ? l : ql
qr = r < qr ? r : qr
if (ql >= qr) return
if (l === ql && r === qr) {
res = this._op(res, node.sum)
return
}
const m = Math.floor(l + (r - l) / 2)
_query(node.left, l, m, ql, qr)
if (ql <= node.index && node.index < qr) {
res = this._op(res, node.data)
}
_query(node.right, m, r, ql, qr)
}
_query(root, this._lower, this._upper, start, end)
return res
}
queryAll(root: SegNode<E> = this._root): E {
return this.query(this._lower, this._upper, root)
}
/**
* 二分查询最大的`end`使得切片`[start:end)`内的聚合值满足`check`.
* {@link _lower} <= start <= {@link _upper}.
* @alias findFirst
*/
maxRight(start: number, check: (e: E) => boolean, root: SegNode<E> = this._root): number {
if (start < this._lower) start = this._lower
if (start >= this._upper) return this._upper
let x = this._e()
const _maxRight = (node: SegNode<E> | undefined, l: number, r: number, ql: number): number => {
if (!node || r <= ql) return this._upper
const tmp = this._op(x, node.sum)
if (check(tmp)) {
x = tmp
return this._upper
}
const m = Math.floor(l + (r - l) / 2)
const k = _maxRight(node.left, l, m, ql)
if (k !== this._upper) return k
if (ql <= node.index) {
x = this._op(x, node.data)
if (!check(x)) {
return node.index
}
}
return _maxRight(node.right, m, r, ql)
}
return _maxRight(root, this._lower, this._upper, start)
}
/**
* 二分查询最小的`start`使得切片`[start:end)`内的聚合值满足`check`.
* {@link _lower} <= end <= {@link _upper}.
* @alias findLast
*/
minLeft(end: number, check: (e: E) => boolean, root: SegNode<E> = this._root): number {
if (end > this._upper) end = this._upper
if (end <= this._lower) return this._lower
let x = this._e()
const _minLeft = (node: SegNode<E> | undefined, l: number, r: number, qr: number): number => {
if (!node || qr <= l) return this._lower
const tmp = this._op(node.sum, x)
if (check(tmp)) {
x = tmp
return this._lower
}
const m = Math.floor(l + (r - l) / 2)
const k = _minLeft(node.right, m, r, qr)
if (k !== this._lower) return k
if (node.index < qr) {
x = this._op(node.data, x)
if (!check(x)) {
return node.index + 1
}
}
return _minLeft(node.left, l, m, qr)
}
return _minLeft(root, this._lower, this._upper, end)
}
getAll(root: SegNode<E> = this._root): [index: number, value: E][] {
const res: [number, E][] = []
const _getAll = (node: SegNode<E> | undefined) => {
if (!node) return
_getAll(node.left)
res.push([node.index, node.data])
_getAll(node.right)
}
_getAll(root)
return res
}
copy(node: SegNode<E>): SegNode<E> {
if (!node || !this._persistent) return node
return { left: node.left, right: node.right, index: node.index, data: node.data, sum: node.sum }
}
private _get(root: SegNode<E> | undefined, index: number): E {
if (!root) return this._e()
if (index === root.index) return root.data
if (index < root.index) return this._get(root.left, index)
return this._get(root.right, index)
}
private _set(root: SegNode<E> | undefined, l: number, r: number, i: number, x: E): SegNode<E> {
if (!root) return SegmentTreeDynamic._newNode(i, x)
root = this.copy(root)
if (root.index === i) {
root.data = x
this._pushUp(root)
return root
}
const m = Math.floor(l + (r - l) / 2)
if (i < m) {
if (root.index < i) {
const tmp1 = root.index
root.index = i
i = tmp1
const tmp2 = root.data
root.data = x
x = tmp2
}
root.left = this._set(root.left, l, m, i, x)
} else {
if (i < root.index) {
const tmp1 = root.index
root.index = i
i = tmp1
const tmp2 = root.data
root.data = x
x = tmp2
}
root.right = this._set(root.right, m, r, i, x)
}
this._pushUp(root)
return root
}
private _pushUp(root: SegNode<E>): void {
root.sum = root.data
if (root.left) root.sum = this._op(root.left.sum, root.sum)
if (root.right) root.sum = this._op(root.sum, root.right.sum)
}
private _update(root: SegNode<E> | undefined, l: number, r: number, i: number, x: E): SegNode<E> {
if (!root) return SegmentTreeDynamic._newNode(i, x)
root = this.copy(root)
if (root.index === i) {
root.data = this._op(root.data, x)
this._pushUp(root)
return root
}
const m = Math.floor(l + (r - l) / 2)
if (i < m) {
if (root.index < i) {
const tmp1 = root.index
root.index = i
i = tmp1
const tmp2 = root.data
root.data = x
x = tmp2
}
root.left = this._update(root.left, l, m, i, x)
} else {
if (i < root.index) {
const tmp1 = root.index
root.index = i
i = tmp1
const tmp2 = root.data
root.data = x
x = tmp2
}
root.right = this._update(root.right, m, r, i, x)
}
this._pushUp(root)
return root
}
private static _newNode<V>(index: number, value: V): SegNode<V> {
return {
index,
left: undefined,
right: undefined,
data: value,
sum: value
}
}
}
export { SegmentTreeDynamic }
if (require.main === module) {
const seg = new SegmentTreeDynamic<number>(
0,
10,
() => 0,
(a, b) => a + b
)
seg.update(0, 1)
seg.set(0, 23)
console.log(seg.getAll(), seg.queryAll())
seg.update(0, 1)
console.log(seg.getAll(), seg.queryAll())
seg.set(0, 1)
seg.update(0, 1)
console.log(seg.getAll(), seg.queryAll())
// check with queryAll
for (let i = 0; i <= 10; i++) {
seg.set(i, i)
if (seg.queryAll() !== seg.query(0, 100)) {
console.log(seg.queryAll(), seg.query(0, 100))
throw new Error('queryAll failed')
}
}
// https://leetcode.cn/problems/maximum-number-of-jumps-to-reach-the-last-index/
// 6899. 达到末尾下标所需的最大跳跃次数
// 给你一个下标从 0 开始、由 n 个整数组成的数组 nums 和一个整数 target 。
// 你的初始位置在下标 0 。在一步操作中,你可以从下标 i 跳跃到任意满足下述条件的下标 j :
// 0 <= i < j < n
// -target <= nums[j] - nums[i] <= target
// 返回到达下标 n - 1 处所需的 最大跳跃次数 。
// 如果无法到达下标 n - 1 ,返回 -1 。
//
// !O(nlog(U)), 线段树维护`值域最大值`
function maximumJumps(nums: number[], target: number): number {
const INF = 2e15
const n = nums.length
const seg = new SegmentTreeDynamic<number>(-3e9, 3e9, () => -INF, Math.max)
seg.update(nums[0], 0)
for (let i = 1; i < n; i++) {
const preMax = seg.query(nums[i] - target, nums[i] + target + 1)
seg.update(nums[i], preMax + 1)
}
const res = seg.get(nums[n - 1])
return res >= 0 ? res : -1
}
}