-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathbinomialPresum.go
303 lines (267 loc) · 5.66 KB
/
binomialPresum.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
package main
import (
"math"
"sort"
)
// https://leetcode.cn/contest/hust_1024_2023/problems/yH1vqC/
// 华科大-04. 美丽字符串
func beautifulString(s string) int {
curOne, curZero := 0, 0
todo := make([][2]int, 0, len(s))
res := 0
for i, c := range s {
if c == '1' {
curOne++
} else {
curZero++
}
atLeastSelect := i + 1
if c == '1' {
atLeastSelect -= curOne
} else {
atLeastSelect -= curZero
}
res += Pow(2, i, MOD)
res %= MOD
todo = append(todo, [2]int{i, atLeastSelect - 1})
}
preSum := BinominalPresum(todo, E)
for i := 0; i < len(preSum); i++ {
res -= preSum[i]
res %= MOD
}
if res < 0 {
res += MOD
}
return res
}
const MOD int = 998244353
var E = NewEnumeration(2e5+10, MOD)
type IEnumeration interface {
Inv(v int) int
C(n, k int) int
}
var _ IEnumeration = (*Enumeration)(nil)
// 莫队求组合数前缀和.
//
// queries[i] = [n, k] 表示组合数 C(n, k).
// 返回数组第i项为组合数前缀和 `C(ni,0) + C(ni,1) + ... + C(ni,ki)`.
func BinominalPresum(queries [][2]int, enumeration *Enumeration) []int {
maxN := 2
for _, q := range queries {
maxN = max(maxN, q[0])
}
q := len(queries)
mo := NewMoAlgo(maxN+1, q)
for _, q := range queries {
mo.AddQuery(q[1], q[0])
}
res := make([]int, q)
inv2 := enumeration.Inv(2)
cur := 1
curN, curK := 0, 0
addLeft := func(_ int) {
cur -= enumeration.C(curN, curK)
cur %= MOD
curK--
}
addRight := func(_ int) {
cur += cur - enumeration.C(curN, curK)
cur %= MOD
curN++
}
removeLeft := func(_ int) {
curK++
cur += enumeration.C(curN, curK)
cur %= MOD
}
removeRight := func(_ int) {
curN--
cur = (cur + enumeration.C(curN, curK)) * inv2 % MOD
}
query := func(qid int) {
if cur < 0 {
cur += MOD
}
res[qid] = cur
}
mo.Run(addLeft, addRight, removeLeft, removeRight, query)
return res
}
type Enumeration struct {
fac, ifac, inv []int
mod int
}
// 模数为质数时的组合数计算.
func NewEnumeration(initSize, mod int) *Enumeration {
res := &Enumeration{
fac: make([]int, 1, initSize+1),
ifac: make([]int, 1, initSize+1),
inv: make([]int, 1, initSize+1),
mod: mod,
}
res.fac[0] = 1
res.ifac[0] = 1
res.inv[0] = 1
res.expand(initSize)
return res
}
// 阶乘.
func (e *Enumeration) Fac(k int) int {
e.expand(k)
return e.fac[k]
}
// 阶乘逆元.
func (e *Enumeration) Ifac(k int) int {
e.expand(k)
return e.ifac[k]
}
// 模逆元.
func (e *Enumeration) Inv(k int) int {
e.expand(k)
return e.inv[k]
}
// 组合数.
func (e *Enumeration) C(n, k int) int {
if n < 0 || k < 0 || n < k {
return 0
}
mod := e.mod
return e.Fac(n) * e.Ifac(k) % mod * e.Ifac(n-k) % mod
}
// 排列数.
func (e *Enumeration) P(n, k int) int {
if n < 0 || k < 0 || n < k {
return 0
}
mod := e.mod
return e.Fac(n) * e.Ifac(n-k) % mod
}
// 可重复选取元素的组合数.
func (e *Enumeration) H(n, k int) int {
if n == 0 {
if k == 0 {
return 1
}
return 0
}
return e.C(n+k-1, k)
}
// n个相同的球放入k个不同的盒子(盒子可放任意个球)的方法数.
func (e *Enumeration) Put(n, k int) int {
return e.C(n+k-1, n)
}
// 卡特兰数.
func (e *Enumeration) Catalan(n int) int {
return e.C(2*n, n) * e.Inv(n+1) % e.mod
}
// lucas定理求解组合数.适合模数较小的情况.
func (e *Enumeration) Lucas(n, k int) int {
if k == 0 {
return 1
}
mod := e.mod
return e.C(n%mod, k%mod) * e.Lucas(n/mod, k/mod) % mod
}
func (e *Enumeration) expand(size int) {
if upper := e.mod - 1; size > upper {
size = upper
}
if len(e.fac) < size+1 {
mod := e.mod
preSize := len(e.fac)
diff := size + 1 - preSize
e.fac = append(e.fac, make([]int, diff)...)
e.ifac = append(e.ifac, make([]int, diff)...)
e.inv = append(e.inv, make([]int, diff)...)
for i := preSize; i < size+1; i++ {
e.fac[i] = e.fac[i-1] * i % mod
}
e.ifac[size] = Pow(e.fac[size], mod-2, mod) // !modInv
for i := size - 1; i >= preSize; i-- {
e.ifac[i] = e.ifac[i+1] * (i + 1) % mod
}
for i := preSize; i < size+1; i++ {
e.inv[i] = e.ifac[i] * e.fac[i-1] % mod
}
}
}
func Pow(base, exp, mod int) int {
base %= mod
res := 1 % mod
for ; exp > 0; exp >>= 1 {
if exp&1 == 1 {
res = res * base % mod
}
base = base * base % mod
}
return res
}
type MoAlgo struct {
queryOrder int
chunkSize int
buckets [][]query
}
type query struct{ qi, left, right int }
func NewMoAlgo(n, q int) *MoAlgo {
chunkSize := max(1, n/max(1, int(math.Sqrt(float64(q*2/3)))))
buckets := make([][]query, n/chunkSize+1)
return &MoAlgo{chunkSize: chunkSize, buckets: buckets}
}
// 添加一个查询,查询范围为`左闭右开区间` [left, right).
//
// 0 <= left <= right <= n
func (mo *MoAlgo) AddQuery(left, right int) {
index := left / mo.chunkSize
mo.buckets[index] = append(mo.buckets[index], query{mo.queryOrder, left, right})
mo.queryOrder++
}
func (mo *MoAlgo) Run(
addLeft func(index int),
addRight func(index int),
removeLeft func(index int),
removeRight func(index int),
query func(qid int),
) {
left, right := 0, 0
for i, bucket := range mo.buckets {
if i&1 == 1 {
sort.Slice(bucket, func(i, j int) bool { return bucket[i].right < bucket[j].right })
} else {
sort.Slice(bucket, func(i, j int) bool { return bucket[i].right > bucket[j].right })
}
for _, q := range bucket {
// !窗口扩张
for left > q.left {
left--
addLeft(left)
}
for right < q.right {
addRight(right)
right++
}
// !窗口收缩
for left < q.left {
removeLeft(left)
left++
}
for right > q.right {
right--
removeRight(right)
}
query(q.qi)
}
}
}
func min(a, b int) int {
if a <= b {
return a
}
return b
}
func max(a, b int) int {
if a >= b {
return a
}
return b
}