forked from TikhonJelvis/RL-book
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdistribution.py
333 lines (240 loc) · 8.79 KB
/
distribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
from __future__ import annotations
from abc import ABC, abstractmethod
from collections import Counter, defaultdict
from dataclasses import dataclass
import numpy as np
import random
from typing import (Callable, Dict, Generic, Iterator, Iterable,
Mapping, Optional, Sequence, Tuple, TypeVar)
A = TypeVar('A')
B = TypeVar('B')
class Distribution(ABC, Generic[A]):
'''A probability distribution that we can sample.
'''
@abstractmethod
def sample(self) -> A:
'''Return a random sample from this distribution.
'''
pass
def sample_n(self, n: int) -> Sequence[A]:
'''Return n samples from this distribution.'''
return [self.sample() for _ in range(n)]
@abstractmethod
def expectation(
self,
f: Callable[[A], float]
) -> float:
'''Return the expecation of f(X) where X is the
random variable for the distribution and f is an
arbitrary function from X to float
'''
pass
def map(
self,
f: Callable[[A], B]
) -> Distribution[B]:
'''Apply a function to the outcomes of this distribution.'''
return SampledDistribution(lambda: f(self.sample()))
def apply(
self,
f: Callable[[A], Distribution[B]]
) -> Distribution[B]:
'''Apply a function that returns a distribution to the outcomes of
this distribution. This lets us express *dependent random
variables*.
'''
def sample():
a = self.sample()
b_dist = f(a)
return b_dist.sample()
return SampledDistribution(sample)
class SampledDistribution(Distribution[A]):
'''A distribution defined by a function to sample it.
'''
sampler: Callable[[], A]
expectation_samples: int
def __init__(
self,
sampler: Callable[[], A],
expectation_samples: int = 10000
):
self.sampler = sampler
self.expectation_samples = expectation_samples
def sample(self) -> A:
return self.sampler()
def expectation(
self,
f: Callable[[A], float]
) -> float:
'''Return a sampled approximation of the expectation of f(X) for some f.
'''
return sum(f(self.sample()) for _ in
range(self.expectation_samples)) / self.expectation_samples
class Uniform(SampledDistribution[float]):
'''Sample a uniform float between 0 and 1.
'''
def __init__(self, expectation_samples: int = 10000):
super().__init__(
sampler=lambda: random.uniform(0, 1),
expectation_samples=expectation_samples
)
class Poisson(SampledDistribution[int]):
'''A poisson distribution with the given parameter.
'''
λ: float
def __init__(self, λ: float, expectation_samples: int = 10000):
self.λ = λ
super().__init__(
sampler=lambda: np.random.poisson(lam=self.λ),
expectation_samples=expectation_samples
)
class Gaussian(SampledDistribution[float]):
'''A Gaussian distribution with the given μ and σ.'''
μ: float
σ: float
def __init__(self, μ: float, σ: float, expectation_samples: int = 10000):
self.μ = μ
self.σ = σ
super().__init__(
sampler=lambda: np.random.normal(loc=self.μ, scale=self.σ),
expectation_samples=expectation_samples
)
class Gamma(SampledDistribution[float]):
'''A Gamma distribution with the given α and β.'''
α: float
β: float
def __init__(self, α: float, β: float, expectation_samples: int = 10000):
self.α = α
self.β = β
super().__init__(
sampler=lambda: np.random.gamma(shape=self.α, scale=1/self.β),
expectation_samples=expectation_samples
)
class Beta(SampledDistribution[float]):
'''A Beta distribution with the given α and β.'''
α: float
β: float
def __init__(self, α: float, β: float, expectation_samples: int = 10000):
self.α = α
self.β = β
super().__init__(
sampler=lambda: np.random.beta(a=self.α, b=self.β),
expectation_samples=expectation_samples
)
class FiniteDistribution(Distribution[A], ABC):
'''A probability distribution with a finite number of outcomes, which
means we can render it as a PDF or CDF table.
'''
@abstractmethod
def table(self) -> Mapping[A, float]:
'''Returns a tabular representation of the probability density
function (PDF) for this distribution.
'''
pass
def probability(self, outcome: A) -> float:
'''Returns the probability of the given outcome according to this
distribution.
'''
return self.table()[outcome]
def map(self, f: Callable[[A], B]) -> FiniteDistribution[B]:
'''Return a new distribution that is the result of applying a function
to each element of this distribution.
'''
result: Dict[B, float] = defaultdict(float)
for x, p in self:
result[f(x)] += p
return Categorical(result)
def sample(self) -> A:
outcomes = list(self.table().keys())
weights = list(self.table().values())
return random.choices(outcomes, weights=weights)[0]
# TODO: Can we get rid of f or make it optional? Right now, I
# don't think that's possible with mypy.
def expectation(self, f: Callable[[A], float]) -> float:
'''Calculate the expected value of the distribution, using the given
function to turn the outcomes into numbers.
'''
return sum(p * f(x) for x, p in self)
def __iter__(self) -> Iterator[Tuple[A, float]]:
return iter(self.table().items())
def __eq__(self, other: object) -> bool:
if isinstance(other, FiniteDistribution):
return self.table() == other.table()
else:
return False
def __repr__(self) -> str:
return repr(self.table())
@dataclass(frozen=True)
class Constant(FiniteDistribution[A]):
'''A distribution that has a single outcome with probability 1.
'''
value: A
def sample(self) -> A:
return self.value
def table(self) -> Mapping[A, float]:
return {self.value: 1}
def probability(self, outcome: A) -> float:
return 1. if outcome == self.value else 0.
@dataclass(frozen=True)
class Bernoulli(FiniteDistribution[bool]):
'''A distribution with two outcomes. Returns True with probability p
and False with probability 1 - p.
'''
p: float
def sample(self) -> bool:
return random.uniform(0, 1) <= self.p
def table(self) -> Mapping[bool, float]:
return {True: self.p, False: 1 - self.p}
def probability(self, outcome: bool) -> float:
return self.p if outcome else 1 - self.p
@dataclass
class Range(FiniteDistribution[int]):
'''Select a random integer in the range [low, high), with low
inclusive and high exclusive. (This works exactly the same as the
normal range function, but differently from random.randit.)
'''
low: int
high: int
def __init__(self, a: int, b: Optional[int] = None):
if b is None:
b = a
a = 0
assert b > a
self.low = a
self.high = b
def sample(self) -> int:
return random.randint(self.low, self.high - 1)
def table(self) -> Mapping[int, float]:
length = self.high - self.low
return {x: 1 / length for x in range(self.low, self.high)}
class Choose(FiniteDistribution[A]):
'''Select an element of the given list uniformly at random.
'''
options: Sequence[A]
_table: Optional[Mapping[A, float]] = None
def __init__(self, options: Iterable[A]):
self.options = list(options)
def sample(self) -> A:
return random.choice(self.options)
def table(self) -> Mapping[A, float]:
if self._table is None:
counter = Counter(self.options)
length = len(self.options)
self._table = {x: counter[x] / length for x in counter}
return self._table
def probability(self, outcome: A) -> float:
return self.table().get(outcome, 0.0)
class Categorical(FiniteDistribution[A]):
'''Select from a finite set of outcomes with the specified
probabilities.
'''
probabilities: Mapping[A, float]
def __init__(self, distribution: Mapping[A, float]):
total = sum(distribution.values())
# Normalize probabilities to sum to 1
self.probabilities = {outcome: probability / total
for outcome, probability in distribution.items()}
def table(self) -> Mapping[A, float]:
return self.probabilities
def probability(self, outcome: A) -> float:
return self.probabilities.get(outcome, 0.)